Из сосуда содержащего 2 белых и 4 черных шара
Следствием теорем сложения и умножения является формула полной вероятности.
Допустим, что предполагается провести опыт, об условиях которого можно сделать n исключающих друг друга предположений (гипотез) ,, причем .
Вероятность некоторого события A, которое может появиться только вместе с одной из гипотез, вычисляется по формуле
.
Эта формула носит название формулы полной вероятности..
Получить решение
Если же событие A совершилось и необходимо найти вероятность того, что оно произошло совместно с некоторой гипотезой , то необходимо воспользоваться формулой Бейеса
.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
ПРИМЕР 13.2.30. Имеются три одинаковые на вид урны; в первой 2 белых и 3 черных шара, во второй – 4 белых и 1 черный шар, в третьей – 3 белых шара. Наугад выбирается одна из урн и из нее вынимается один шар. Найти вероятность того, что этот шар будет белым.
Решение. Опыт предполагает 3 гипотезы:
выбор первой урны; ;
выбор второй урны; ;
выбор третьей урны; .
Рассмотрим интересующее нас событие.
A — вынутый шар белый. Данное событие может произойти только с одной из гипотез .
Тогда .
ПРИМЕР 13.2.31. Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение. Можно сделать два предположения (гипотезы):
деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй) ;
деталь произведена вторым автоматом, причем .
Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом , если произведена вторым автоматом .
Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна
.
Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна
.
ПРИМЕР 13.2.32. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго – 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку (исход «обе пробоины совпали» отбрасываем, как ничтожно маловероятный).
Решение. До опыта возможны следующие гипотезы:
ни первый, ни второй стрелки не попадут;
оба стрелка попадут;
первый стрелок попадет, а второй – нет;
первый стрелок не попадет, а второй попадает.
Доопытные (априорные) вероятности гипотез:
,
,
,
.
Условные вероятности осуществленного события A — в мишени одна пробоина, при этих гипотезах равны:
.
После опыта гипотезы и становятся невозможными, а послеопытные (апостериорные) вероятности гипотез и по формуле Бейеса будут
; .
Примеры и задачи для самостоятельного решения
Решить задачи, используя формулу полной вероятности и формулу Бейеса
13.2.5.1. В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника – 0,9, для велосипедиста – 0,8 и для бегуна – 0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.
Отв.:0,86
13.2.5.2. Из урны, содержащей 5 белых и 3 черных шара, извлекается наудачу один шар и перекладывается в другую урну, которая до этого содержала 2 белых и 7 черных шаров. Цвет перекладываемого шара не фиксируется. Из второй урны наудачу извлекается один шар. Какова вероятность, что этот шар окажется белым?
Отв.:21/80
13.2.5.3. В урну, содержащую шаров, опущен белый шар, после чего наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Отв.:(n+2)/(2(n+1))
13.2.5.4. В условиях предыдущей задачи из урны был извлечен белый шар. Найти вероятность того, что в урне было белых шаров.
Отв.:2(m+1)/((n+1)(n+2))
13.2.5.5. В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом равна 0,95; для винтовки с обычным прицелом эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
Отв.:0,85
13.2.5.6. В условиях предыдущей задачи стрелок попал в мишень. Определить вероятность того, что он стрелял а) из винтовки с оптическим прицелом; б) из винтовки с обычным прицелом.
Отв.:а)57/85; б)28/85
13.2.5.7. Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса 4, из второй – 6, из третьей группы – 5 студентов. Вероятности того, что студент первой, второй и третьей группы попадает в сборную института, соответственно равны 0,9; 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную. К какой из групп вероятнее всего принадлежал этот студент?
Отв.:18/59;21/59;20/59
13.2.5.8. Из полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую извлеченную наудачу кость можно приставить к первой.
Отв.:7/18
13.2.5.9. В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.
Отв.:0,5
13.2.5.10. Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе как 3:2. Вероятность того, что будет заправляться грузовая машина равна 0,1; для легковой машины эта вероятность равна 0,2. Найти вероятность того, что наудачу выбранная машина потребует заправки.
Отв.:
13.2.5.11. В условиях предыдущей задачи к бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.
Отв.:3/7
13.2.5.12. В группе из 10 студентов, пришедших на экзамен, 3 подготовлены на отлично, 4 – хорошо, 2 – посредственно, 1 – плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент знает все 20 вопросов, хорошо подготовленный – 16 вопросов, посредственно подготовленный – 10 вопросов и двоечник – 5 вопросов. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен а) отлично; б) плохо.
Отв.:а)114/197; б)1/591
13.2.5.13. При отклонении от нормального режима работы автомата срабатывает сигнализатор С-1 с вероятностью 0,8, а сигнализатор С-11 срабатывает с вероятностью 1. Вероятности того, что автомат снабжен сигнализатором С-1 или С-11 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С-1 или С-11?
Отв.:P(С-1)= 6/11, Р(С-11)= 5/11
13.2.5.14. В каждой из трех урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.
Отв.:0,4
13.2.5.15. Имеется урн, в каждой из которых белых и черных шаров. Из первой урны во вторую перекладывается наудачу один шар, затем из второй в третью и так далее. Затем из последней урны извлекается один шар. Найти вероятность того, что он белый.
Отв.:a/(a+b)
13.2.5.16. По объекту производится три одиночных независимых выстрела. Вероятность попадания при первом выстреле равна 0,4; при втором – 0,5; при третьем – 0,7. Для вывода объекта из строя заведомо достаточно трех попаданий, при двух попаданиях он выходит из строя с вероятностью 0,6; при одном – с вероятностью 0,2. Найти вероятность того, что в результате трех выстрелов объект будет выведен из строя.
Отв.:0,458
13.2.5.17. Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 20, 15, 10. Из наудачу выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Деталь возвращают в партию и вторично из той же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.
Отв.:4/29
13.2.5.18. Три стрелка произвели залп, причем две пули поразили мишень. Найти вероятность того, что третий стрелок поразил мишень, если вероятности попадания в мишень первым, вторым и третьим стрелками соответственно равны 0,6; 0,5 и 0,4.
Отв.:10/19
13.2.5.19. Ребенок, не умеющий читать, рассыпал разрезанное на буквы слово “каракатица”. Какова вероятность того, что, потеряв одну из гласных букв, неизвестно какую именно, и взяв затем, друг за другом 5 букв он составит слово “карат”?
Отв.:1/1050
13.2.5.20. В урне 3 белых и 2 черных шара. Два игрока поочередно вынимают из урны по шару, не вкладывая их обратно. Выигрывает тот, кто раньше получит белый шар. Найти вероятность того, что выиграет первый игрок.
Отв.:0,7
13.2.5.21. Для передачи сообщения путем подачи сигналов ”точка” и ”тире” используется телеграфная система. Статистические свойства помех таковы, что искажается в среднем 2/5 сообщений ”точка” и 1/5 сообщений ”тире”. Известно, что среди передаваемых сигналов ”точка” и ”тире” встречаются в отношении 5:3. Определить вероятности того, что при приеме сигналов ”точка” и ”тире” в действительности были переданы эти сигналы.
Отв.:5/6;6/11
Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >
Источник
2.4. Вероятность наступления некоторого случайного события в каждом опыте одинакова и равна 0,2. Опыты проводятся последовательно до наступления этого события. Определить вероятность того, что: а) придётся проводить четвёртый опыт; б) будет проведено четыре опыта.
2.5. Три стрелка одновременно стреляют по одной мишени. Вероятности попадания при одном выстреле соответственно равны 0,7; 0,8 и 0,9. Найти вероятность того, что при одновременном залпе этих стрелков в мишени будет: а) только одно попадание; б) хотя бы одно попадание.
2.6. Из урны, содержащей шесть белых и четыре чёрных шара, наудачу последовательно по одному извлекаются шары до первого появления шара чёрного цвета. Найти вероятность того, что придётся производить четвёртое извлечение, если шары берутся: а) без возвращения; б) с возвращением в урну после фиксирования его цвета.
2.7. Вероятность того, что изготовленная на первом станке деталь будет первосортной равна 0,7. Для детали изготовленной на втором станке эта вероятность равна 0,8. На первом станке изготовлены две детали, на втором – три. Найти вероятность того, что все пять деталей будут первосортными.
2.8. Определить вероятность того, что наудачу выбранное натуральное число: а) не делится ни на два, ни на три; б) не делится или на два, или на три.
2.9. На пяти карточках написано по одной букве так, что они составляют слово «колос». Карточки перемешиваются, а затем раскладываются наудачу снова в ряд. Какова вероятность того, что получится слово «сокол»?
2.10. На шести карточках написано по одной букве так, что они составляют слово «карета». Карточки перемешиваются, а затем раскладываются наудачу снова в ряд. Какова вероятность того, что получится слово «ракета»?
2.11. Для сигнализации об аварии установлены два работающих независимо друг от друга сигнализатора. Вероятность того, что при аварии сработает первый сигнализатор, равна 0,95, а того, что сработает второй сигнализатор – 0,9. Найти вероятность того, что: а) при аварии сработает только один сигнализатор; б) при аварии сработает хотя бы один сигнализатор.
2.12. Абонент забыл последнюю цифру номера телефона, а потому набирает её наудачу. Определить вероятность того, что ему придётся звонить не более чем в три места.
2.13. Из урны, содержащей два чёрных и два белых шара, два игрока поочерёдно без возвращения извлекают шары. Выигрывает тот, кто первым извлечёт белый шар. Найти вероятности выигрыша для каждого из игроков.
2.14. Два игрока подбрасывают по две монеты. Выигрывает тот, у которого выпадет больше гербов. В случае выпадения равного числа гербов подбрасывания продолжаются до первого положительного результата. Определить вероятности выигрыша игры для каждого игрока. Какова вероятность того, что игрок A выиграет игру при третьем бросании? Какова вероятность того, что игроки сделают ровно три бросания? Какова вероятность того, что игроки сделают больше трёх бросаний?
2.15. Три орудия поочерёдно стреляют по одной мишени до первого попадания в неё. Вероятности попадания при одном выстреле у них равны соответственно: 0,6; 0,5 и 0,4. Определить вероятность того, что цель будет поражена, если каждое орудие может сделать не более трёх выстрелов. Какова вероятность того, что цель будет поражена при четвёртом выстреле? Какова вероятность того, что на поражение цели будет израсходовано не более трёх снарядов?
2.16. В коробке находятся 6 катушек с белыми нитками, 4 катушки с чёрными нитками и 2 катушки с красными нитками. Катушки извлекаются по одной без возвращения. Определить вероятность того, что катушка с белыми нитками появится раньше катушки с чёрными нитками.
2.17. Из полной колоды карт (52 штуки) последовательно по одной извлекаются три карты, причём карта чёрной масти сразу возвращается в колоду, а карта красной масти – не возвращается. Определить вероятность того, что третья извлечённая карта будет красной масти.
2.18. В урне находятся n шаров с номерами от 1 до n. Наудачу проводится m извлечений по одному шару с возвращением извлечённого шара после фиксирования его номера в урну. Определить вероятность того, что ни один шар не появится более одного раза.
2.19. В обществе, состоящем из 2n человек, одинаковое число мужчин и женщин. Места за круглым столом занимаются наудачу. Определить вероятность того, что два лица одного пола не займут места рядом.
2.20. В урне находятся n+m одинаковых шаров, из которых n– белого, а m– чёрного цвета . Производятся подряд без возвращения n извлечений по два шара. Определить вероятность того, что каждый раз извлекались пары шаров разного цвета.
2.21. В урне имеются два шара – белый и чёрный. Производятся извлечения по одному шару до тех пор, пока не появится чёрный шар, причём при извлечении белого шара этот шар возвращается в урну и при этом добавляются ещё два белых шара. Определить вероятность того, что при первых пятидесяти извлечениях чёрный шар не будет извлечён.
2.22. Игрок А поочерёдно играет с игроками В и С, имея вероятность выигрыша в каждой партии p, и прекращает игру после первого проигрыша или после двух партий, сыгранных с каждым игроком. Определить вероятности выигрыша игры A,B и С. Как изменяются вероятности выигрыша всей игры для каждого из игроков, если ; ?
2.23. Из урны, содержащей nшаров с номерами от 1 до n, последовательно извлекают два шара, причём первый шар возвращается, если его номер не равен единице. Определить вероятность того, что шар с номером 2 будет извлечён при втором извлечении.
2.24. Студент успел выучить 20 из 25 вопросов программы. Зачёт считается сданным, если студент ответит не менее чем на три из четырёх предложенных вопросов программы. Какова вероятность того, что: а) студент сдаст зачёт; б) зачёт будет сдан, если он правильно ответит на первые два вопроса и хотя бы на один из двух оставшихся; в) зачёт будет сдан, если известно, что на первые два из четырёх вопросов он уже дал правильные ответы?
2.25. В урне находятся 5 белых, 7 красных и 9 синих шаров. Наудачу извлекаются сразу три шара. Какова вероятность того, что все извлечённые шары одинакового цвета? Какова вероятность, того, что эти шары – синие, если известно, что они одинакового цвета и не белые?
2.26. Из колоды карт (36 штук) наудачу извлекаются сразу три карты. Определить вероятность того, что это будут три «дамы», если известно, что это три карты – «картинки».
2.27. Общество, состоящее из n мужчин и 2n женщин, разбивается на n групп по три человека. Какова вероятность того, что в каждой группе будет только по одному мужчине?
2.28. В учебнике «Курс теории вероятностей» говорится, что однажды был зарегистрирован факт, когда при раздаче тридцати шести карт между четырьмя партнёрами каждый получил девять карт только одной масти. Найти вероятность такого события. Оценить приблизительно величину этой вероятности.
2.29. Двое поочерёдно бросают монету. Выигрывает тот, у которого раньше появится герб. Определить вероятности выигрыша для каждого из игроков.
2.30. Трое поочерёдно бросают монету. Выигрывает тот, у которого раньше появится герб. Определить вероятности выигрыша для каждого из игроков.
2.31. В урне находятся n белых и m черных шаров. Два игрока поочерёдно извлекают по одному шару, возвращая каждый раз шар обратно, если он – чёрного цвета. Выигрывает тот, у которого первым появится шар белого цвета. Определить вероятности выигрыша для каждого из игроков. Можно ли заранее, при формировании состава урны определить такие числа n и m, при которых игра станет «справедливой»?
2.32. Два стрелка поочерёдно стреляют по одной мишени до первого попадания в неё. Вероятность попадания при одном выстреле у первого стрелка равна , у второго стрелка эта вероятность равна . Найти вероятность того, что первый стрелок сделает больше выстрелов, чем второй. Чему равна вероятность того, что количества сделанных стрелками выстрелов будут одинаковыми? Может ли второй стрелок сделать больше выстрелов, чем первый?
2.33. Упростить вид общей формулы вероятности суммы n случайных событий для случаев, когда совпадают значения вероятностей произведений равных количеств событий-сомножителей.
2.34. В урне имеются n одинаковых шаров с номерами от 1 до n. Все шары извлекаются по одному без возвращения и располагаются в ряд в порядке появления. Определить вероятность того, что хотя бы при одном извлечении номер шара совпадёт с номером его извлечения. Чему равен предел значения этой вероятности, если ?
2.35. В помещении, насчитывающем п пронумерованных мест, nлицам выдали n номерных билетов. Какова вероятность того, что ровноmлиц окажутся на местах, соответствующих номерам билетов, если все места занимаются наудачу?
2.36. В электропоезд, состоящий из n вагонов, входят k пассажиров , каждый из которых выбирает вагон наудачу. Определить вероятность того, что в каждый вагон войдёт хотя бы один пассажир.
2.37. Два игрока играют до победы, причём для этого первому необходимо выиграть mпартий, а второму – n партий. Вероятность выигрыша одной партии первым игроком равна p, а вторым – q, . Определить вероятности выигрыша всей игры каждым из игроков.
2.38.В партии, содержащей п изделий, – т бракованных. Для проверки наудачу выбирается s изделий. Партия бракуется, если среди выбранных изделий окажется более чем k бракованных изделий. Определить вероятность того, что партия будет забракована.
2.39. Рассматриваются три попарно независимых события, которые, однако, все вместе произойти не могут. Предполагая, что все они имеют одну и туже вероятность появления, которая равна p, определить значение p, при котором вероятность появления хотя бы одного из этих трёх событий будет максимальной. Чему равна эта максимально возможная вероятность?
2.40. В урне находятся M белых и Nчёрных шаров. Без возвращения извлекаются k шаров . Известно, что среди этих k шаров есть m шаров белого цвета. Какова вероятность того, что и остальные шаров имеют белый цвет?
2.41. Определить вероятность того, что написанная наудачу простая дробь будет несократимой. (Задача Чебышева).
Ответы
2.1. . . .
2.2. . .
2.3. .
2.4. а) , ;
б) , . 2.5. а) 0,092; б)0,496.
2.6. а) ; б). 2.7. . 2.8. а) ; б) . 2.9. . 2.10. . 2.11. а)0,14; б)0,995. 2.12. 0,3. 2.13. ; . 2.14. Обозначим: «при том бросании у игрока A выпало больше гербов»;
«при том бросании у игрока B выпало больше гербов»;
«при том бросании у игроков были равные количества гербов». Тогда событие A – «игрок Aвыиграл игру» записывается так: . Аналогично записывается событие B. , . Так как игроки находятся в равных условиях, то: . . . 2.15. 0,998272; 0,072; 0,88.
2.16. . 2.17. Обозначим: «i–ая карта – красная» ; «i-ая карта – чёрная» ; С – «в последовательности трёх извлечённых карт последняя карта – красная». Тогда: ; .
2.18. ; . 2.19. .
2.20. .
2.21. . 2.22. ; ; . 2.23. .
2.24. а) ; б) ; в) .
2.25. . . 2.26. .
2.27. .
2.28. .
2.29. ; . 2.30. .
2.31. ; . Игра станет « справедливой» только если будет n=0, то есть, когда в урне вообще не будет белых шаров и игроки об этом знать не будут. 2.32. ; .
2.33. Если: для любой пары индексов i и j для любого набора трёх индексов i , jи kит. д., то: .
2.34. Обозначим – событие: «шар с номером i появился при i-том извлечении». Тогда: для любого ;
для
любой пары i и j; ;
для любой тройки i, j и k; ; …..; .
Используя , получаем . Если , то .
2.35. Пусть А – случайное событие – «m лиц сидят на местах, соответствующих номерам полученных билетов, а остальные n– m лиц сидят на местах, номера которых не соответствуют номерам билетов»;
В – «mлиц сидят на местах, соответствующих номерам полученных билетов»; С – «n–m лиц сидят на местах, номера которых не соответствуют номерам билетов». Ясно, что .
Если – случайное событие – «первые m человек, сидят на местах, соответствующих номерам полученных билетов», то . Подобных групп по m человек можно составить штук, следовательно .
Случайное событие формулируется так: «хотя бы одно лицо из остальных n–m лиц сидит на месте, номер которого соответствует номеру полученного им билета». Рассуждая, как и при решении задачи 2.34, получим . Тогда .
Таким образом: .
2.36. Если А – «в каждый вагон вошёл хотя бы один пассажир», то – «есть вагоны, в которые ни один пассажир не вошёл». Пусть – «в i-том вагон не вошёл ни один пассажир». Тогда , причём события-слагаемые – совместные события с одинаковыми вероятностями осуществления: , , …… Используя результат решения задачи 2.33, получаем: .
2.37. ;.
2.38. Для того чтобы искомая вероятность не была равна нулю, должно быть , тогда ,
где , .
2.39. ; ; .
2.40. Пусть случайное событие А – «среди k извлечённых шаров есть m шаров белого цвета, а цвета остальных () шаров могут быть любыми»; случайное событие C – «все k извлечённых шаров имеют белый цвет». Ясно, что . Но, так как , то . Учитывая, что и , получаем ответ: .
2.41. Простая дробь будет несократимой, если её числитель и знаменатель не будут одновременно делиться на все p, принадлежащие множеству P – множеству простых чисел.
Обозначим случайное событие – «простая дробь – несократима» и случайное событие – «простая дробь несократима на простое число p». Тогда . Так как события-сомножители – независимые события, то искомая вероятность равна бесконечному произведению: . Ясно, что вероятность случайного события – «иm, и nделятся на простое число p» будет равна: =. А тогда получаем: .
§3. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ И ФОРМУЛА БАЙЕСА
3.1. Имеются две партии изделий по 12 и 10 штук, причём в каждой партии одно изделие – бракованное. Изделие, взятое наудачу из первой партии, переложено во вторую. После этого наудачу выбирается одно изделие из второй партии. Определить вероятность извлечения бракованного изделия из второй партии.
3.2. В двух урнах находятся соответственно и белых и и чёрных шаров. Из каждой урны наудачу извлекается по одному шару, а затем из этих двух шаров наудачу выбирается один. Какова вероятность того, что этот шар будет белым?
3.3. Имеется одинаковых урн, в каждой из которых белых и k чёрных шаров. Из первой урны наудачу извлекается один шар и перекладывается во вторую. Затем из второй урны наудачу извлекается один шар и перекладывается в третью урну и т. д. Определить вероятность извлечения после таких перекладываний белого шара из последней урны.
3.4. Имеется три партии деталей. Для контроля качества деталей из наудачу выбранной партии наудачу взята одна деталь. Как велика вероятность обнаружения бракованной детали, если в одной из партий общего количества деталей – бракованные, а в двух других – все доброкачественные?
3.5. В двух из трёх одинаковых урн находятся по два чёрных и по два белых шара, а в третьей пять белых и один чёрный шар. Из наудачу выбранной урны извлекли один шар, который оказался белым. Какова вероятность того, что извлечение проводилось из урны, содержащей пять белых шаров?
3.6. В каждой из урн находится белых и штук чёрных шаров, а в каждой из урн – белых и штук чёрных шаров. Извлечённый из наудачу выбранной урны шар оказался белым. Какова вероятность того, что этот шар извлечён: а) из урны первого типа; б) из урны второго типа?
3.7. Известно, что 96% выпускаемой продукции удовлетворяет стандарту. Упрощённая схема контроля качества признаёт пригодной стандартную продукцию с вероятностью 0,98, а нестандартную признаёт пригодной с вероятностью 0,05. а) Определить вероятность того, что изделие, прошедшее упрощённый контроль, будет признано пригодным. б) Изделие по результатам упрощённого контроля признано пригодным. Какова вероятность того, что контроль не ошибся?
3.8. Вероятность поступления k вызовов на телефонную станцию за промежуток времени длиною t равна . Считая, что количества вызовов за любые два соседних промежутка времени длиною t каждый – независимыми, определить вероятность поступления s вызовов за промежуток времени длиною 2t.
3.9. Определить вероятность того, что 100 лампочек, взятых наудачу из 1000, окажутся исправными, если известно, что число испорченных лампочек на 1000 штук равновозможно от 0 до 5.
3.10. В тире имеется пять ружей, вероятности попадания при одном выстреле из которых соответственно равны: 0,5; 0,6; 0,7; 0,8 и 0,9.Стреляющий берёт винтовку наудачу и делает дин выстрел. Определить вероятность попадания.
3.11. Вероятность попадания снаряда в цель при одном выстреле равна 0,7, а вероятность разрушения цели при попадании в неё одного снаряда равна 0,9. Орудие произвело подряд три выстрела. Какова вероятность того, что цель будет разрушена?
3.12. В сосуд, содержащий n шаров, опущен белый шар. Какова вероятность извлечь из этого сосуда белый шар, если все предположения о первоначальном числе белых шаров в урне – равновозможные? Какова вероятность того, что в урне содержались: а) только белые шары; б) только чёрные шары, если извлечённый шар оказался белым?
3.13. В урне имеется n шаров, причём цвет каждого из них с равными вероятностями может быть белым или чёрным. Извлекаются последовательно m шаров с возвращением каждый раз шара обратно после фиксирования его цвета. Какова вероятность того, что в урне содержатся только белые шары, если чёрные шары не извлекались?
3.14. В ящике находится 15 теннисных мячей, из которых – 9 новых. Для первой игры наугад берут три мяча, которые после игры возвращаются в ящик. Для второй игры также наугад берутся три мяча. Найти вероятность того, что все мячи, взятые для второй игры, – новые.
3.15. В правом кармане имеются три монеты по 50 копеек и четыре монеты по 10 копеек, а в левом – шесть монет по 50 копеек и три монеты по 10 копеек. Из правого кармана в левый карман наудачу перекладываются пять монет. После этого из левого кармана наудачу извлекается одна монета. Определить вероятность того, что это будет монета достоинством в 50 копеек. Как изменится эта вероятность, если сначала перекладывать монеты из левого кармана в правый карман, а потом из правого кармана наудачу брать монету такого же достоинства?
3.16. Из 30 вопросов программы составлено пятнадцать билетов, каждый из которых состоит из двух вопросов. Экзаменующийся студент может ответить только на 25 вопросов. Определить вероятность того, что экзамен экзаменующимся будет сдан, если для этого надо ответить на два вопроса билета или на один из вопросов билета и на один дополнительный вопрос, заданный экзаменатором.
3.17. Преподаватель составил по программе курса M экзаменационных билетов. Студент успел выучить m билетов . Возникает вопрос: «Каким по списку ему лучше всего идти на экзамен (первым, вторым, третьим, …, последним), чтобы вероятность взять «хороший» билет была максимальной»?
3.18. В маршрутном такси едут n пассажиров. На ближайшей остановке каждый из них может выйти с вероятностью p. На этой остановке в такси с вероятностью могут войти два новых пассажира. С вероятностью может войти один новый пассажир и с вероятностью не войдёт ни один новый пассажир . Найти вероятность того, что, когда такси после этой остановке снова тронется в путь, в салоне будут: а) по-прежнему n пассажиров; б)n-1 пассажир.
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 |
Источник