Изменение давления газа в сосуде при изменении объема

Изменение давления газа в сосуде при изменении объема thumbnail

В жизни мы встречаем газообразное состояние вещества, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (он занимает весь предоставленный ему объем), состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Агрегатных состояния точно три?

На самом деле, есть еще четвертое – плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ – газ, в котором помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Давление газа

Мы только что выяснили, что молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.

Например, в комнате, в которой вы сейчас находитесь, на каждый квадратный сантиметр за 1 с молекулами воздуха наносится столько ударов, что их количество выражается двадцати трехзначным числом.

Хотя сила удара отдельной молекулы мала, действие всех молекул о стенки сосуда приводит к значительному давлению. Это как если бы один комар толкал машину, то она бы и не сдвинулась с места, а вот пару сотен миллионов комаров вполне себе способны эту машину сдвинуть.

Зависимость давления от других величин

Зависимость давления от объема

В механике есть формула давления, которая показывает: давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.

Давление

p = F/S

p – давление [Па]

F – сила [Н]

S – площадь [м^2]

То есть, если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы они толкали грузовой автомобиль (просто потому что легковая меньше грузовика).

Из формулы давления следует, что давление на легковой автомобиль будет больше из-за меньшей площади.

Давайте рассмотрим аналогичный пример с двумя сосудами разной площади.

Давление в левом сосуде будет больше, чем во втором, по аналогичной схеме – потому что площадь меньше. Но если площадь основания меньше, то и объем меньше. Это значит, что давление будет зависеть от объема следующим образом: чем больше объем, тем меньше давление – и наоборот.

При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):

Такая зависимость называется законом Бойля-Мариотта.

Она экспериментально проверяется с помощью такой установки.

Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.

Зависимость давления от температуры

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в Жаком Шарлем.

Газ нагревался в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Пренебрегая ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке.

Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, измеряли температуру газа по термометру, а соответствующее давление – по манометру.

Этот эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.

С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейно:

Эта зависимость называется законом Шарля.

Хранение и транспортировка газов

Если нужно перевезти значительное количество газа из одного места в другое, или когда газы необходимо длительно хранить – их помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.

Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.

Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или любым способом пытаться сделать в них отверстие, даже после использования.

Понимать и любить этот мир проще, когда разбираешься в физике. В этом помогут небезразличные и компетентные преподаватели онлайн-школы Skysmart.

Чтобы формулы и задачки ожили и стали более дружелюбными, на уроках мы разбираем примеры из обычной жизни современных подростков. Приходите на бесплатный вводный урок по физике и начните учиться в удовольствие уже завтра!

Источник

Зависимость давления газа от объема

Убе­дим­ся в том, что мо­ле­ку­лы газа дей­стви­тель­но рас­по­ло­же­ны до­ста­точ­но да­ле­ко друг от друга, и по­это­му газы хо­ро­шо сжи­ма­е­мы.Возь­мем шприц и рас­по­ло­жим его пор­шень при­бли­зи­тель­но по­се­ре­дине ци­лин­дра. От­вер­стие шпри­ца со­еди­ним с труб­кой, вто­рой конец ко­то­рой на­глу­хо за­крыт. Таким об­ра­зом, неко­то­рая пор­ция воз­ду­ха будет за­клю­че­на в ци­лин­дре шпри­ца под порш­нем и в труб­ке.В ци­лин­дре под порш­нем за­клю­че­но неко­то­рое ко­ли­че­ство воз­ду­ха. Те­перь по­ста­вим на по­движ­ный пор­шень шпри­ца груз. Легко за­ме­тить, что пор­шень немно­го опу­стит­ся. Это озна­ча­ет, что объем воз­ду­ха умень­шил­ся Дру­ги­ми сло­ва­ми, газы легко сжи­ма­ют­ся. Таким об­ра­зом, между мо­ле­ку­ла­ми газа име­ют­ся до­ста­точ­но боль­шие про­ме­жут­ки. По­ме­ще­ние груза на пор­шень вы­зы­ва­ет умень­ше­ние объ­е­ма газа. С дру­гой сто­ро­ны, после уста­нов­ки груза пор­шень, немно­го опу­стив­шись, оста­нав­ли­ва­ет­ся в новом по­ло­же­нии рав­но­ве­сия. Это озна­ча­ет, что сила дав­ле­ния воз­ду­ха на пор­шень уве­ли­чи­ва­ет­ся и снова урав­но­ве­ши­ва­ет воз­рос­ший вес порш­ня с гру­зом . А по­сколь­ку пло­щадь порш­ня при этом оста­ет­ся неиз­мен­ной, мы при­хо­дим к важ­но­му за­клю­че­нию.

Читайте также:  Как снять спазм сосудов при пониженном давлении

При умень­ше­нии объ­е­ма газа его дав­ле­ние уве­ли­чи­ва­ет­ся.

Будем пом­нить при этом, что масса газа и его тем­пе­ра­ту­ра в ходе опыта оста­ва­лись неиз­мен­ны­ми. Объ­яс­нить за­ви­си­мость дав­ле­ния от объ­е­ма можно сле­ду­ю­щим об­ра­зом. При уве­ли­че­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми уве­ли­чи­ва­ет­ся. Каж­дой мо­ле­ку­ле те­перь нужно прой­ти боль­шее рас­сто­я­ние от од­но­го удара со стен­кой со­су­да до дру­го­го. Сред­няя ско­рость дви­же­ния мо­ле­кул оста­ет­ся неиз­мен­ной .Сле­до­ва­тель­но, мо­ле­ку­лы газа реже уда­ря­ют­ся о стен­ки со­су­да, а это при­во­дит к умень­ше­нию дав­ле­ния газа. И, на­о­бо­рот, при умень­ше­нии объ­е­ма газа его мо­ле­ку­лы чаще уда­ря­ют­ся о стен­ки со­су­да, и дав­ле­ние газа уве­ли­чи­ва­ет­ся . При умень­ше­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми умень­ша­ет­ся

Зависимость давления газа от температуры

В преды­ду­щих опы­тах тем­пе­ра­ту­ра газа оста­ва­лась неиз­мен­ной, и мы изу­ча­ли из­ме­не­ние дав­ле­ния вслед­ствие из­ме­не­ния объ­е­ма газа. Те­перь рас­смот­рим слу­чай, когда объем газа оста­ет­ся по­сто­ян­ным, а тем­пе­ра­ту­ра газа из­ме­ня­ет­ся. Масса при этом также оста­ет­ся неиз­мен­ной. Со­здать такие усло­вия можно, по­ме­стив неко­то­рое ко­ли­че­ство газа в ци­линдр с порш­нем и за­кре­пив пор­шень

Из­ме­не­ние тем­пе­ра­ту­ры дан­ной массы газа при неиз­мен­ном объ­е­ме

Чем выше тем­пе­ра­ту­ра, тем быст­рее дви­жут­ся мо­ле­ку­лы газа.

– во-пер­вых, чаще про­ис­хо­дят удары мо­ле­кул о стен­ки со­су­да;

– во-вто­рых, сред­няя сила удара каж­дой мо­ле­ку­лы о стен­ку ста­но­вит­ся боль­ше. Это при­во­дит нас к еще од­но­му важ­но­му за­клю­че­нию. При уве­ли­че­нии тем­пе­ра­ту­ры газа его дав­ле­ние уве­ли­чи­ва­ет­ся. Будем пом­нить, что дан­ное утвер­жде­ние спра­вед­ли­во, если масса и объем газа в ходе из­ме­не­ния его тем­пе­ра­ту­ры оста­ют­ся неиз­мен­ны­ми.

Хранение и транспортировка газов.

За­ви­си­мость дав­ле­ния газа от объ­е­ма и тем­пе­ра­ту­ры часто ис­поль­зу­ет­ся в тех­ни­ке и в быту. Если тре­бу­ет­ся пе­ре­вез­ти зна­чи­тель­ное ко­ли­че­ство газа из од­но­го места в дру­гое, или когда газы необ­хо­ди­мо дли­тель­но хра­нить, их по­ме­ща­ют в спе­ци­аль­ные проч­ные ме­тал­ли­че­ские со­су­ды. Эти со­су­ды вы­дер­жи­ва­ют вы­со­кие дав­ле­ния, по­это­му с по­мо­щью спе­ци­аль­ных на­со­сов туда можно за­ка­чать зна­чи­тель­ные массы газа, ко­то­рые в обыч­ных усло­ви­ях за­ни­ма­ли бы в сотни раз боль­ший объем. По­сколь­ку дав­ле­ние газов в бал­ло­нах даже при ком­нат­ной тем­пе­ра­ту­ре очень ве­ли­ко, их ни в коем слу­чае нель­зя на­гре­вать или любым спо­со­бом пы­тать­ся сде­лать в них от­вер­стие даже после ис­поль­зо­ва­ния.

Газовые законы физики.

Физика реального мира в расчетах часто сводится к несколько упрощенным моделям. Наиболее применим такой подход к описанию поведения газов. Правила, установленные экспериментальным путем, были сведены различными исследователями в газовые законы физики и послужили появлению понятия «изопроцесс». Это такое прохождение эксперимента, при котором один параметр сохраняет постоянное значение. Газовые законы физики оперируют основными параметрами газа, точнее, его физического состояния. Температурой, занимаемым объемом и давлением. Все процессы, которые относятся к изменению одного или нескольких параметров и называются термодинамическими. Понятие изостатического процесса сводится к утверждению, что во время любого изменения состояния один из параметров остается неизменным. Это поведение так называемого «идеального газа», которое, с некоторыми оговорками, может быть применено к реальному веществу. Как отмечено выше, в реальности все несколько сложнее. Однако, с высокой достоверностью поведение газа при неизменной температуре характеризуется с помощью закона Бойля-Мариотта, который гласит:

Произведение объема на давление газа – величина постоянная. Это утверждение считается верным в том случае, когда температура не изменяется.

Этот процесс носит название «изотермический». При этом меняются два из трех исследуемых параметров. Физически все выглядит просто. Сожмите надутый шарик. Температуру можно считать неизменной. А в результате внутри шара повысится давление при уменьшении объема. Величина произведения двух параметров останется неизменной. Зная исходное значение хотя бы одного из них, можно легко узнать показатели второго. Еще одно правило в списке «газовые законы физики» – изменение объема газа и его температуры при одинаковом давлении. Это называется «изобарный процесс» и описывается с помощью закона Гей-Люсака. Соотношение объема и температуры газа неизменно. Это верно при условии постоянного значения давления в данной массе вещества. Физически тоже все просто. Если хоть раз заряжали газовую зажигалку или пользовались углекислотным огнетушителем, видели действие этого закона «вживую». Газ, выходящий из баллончика или раструба огнетушителя, быстро расширяется. Его температура резко падает. Можно обморозить кожу рук. В случае с огнетушителем – образуются целые хлопья углекислотного снега, когда газ под воздействием низкой температуры быстро переходит в твердое состояние из газообразного. Благодаря закону Гей-Люсака, можно легко узнать температуру газа, зная его объем в любой момент времени. Газовые законы физики описывают и поведение при условии неизменного занимаемого объема. Такой процесс называется изохорным и описывается законом Шарля, который гласит: При неизменном занимаемом объеме, отношение давления к температуре газа остается неизменным в любой момент времени.В реальности все знают правило: нельзя нагревать баллончики от освежителей воздуха и прочие сосуды, содержащие газ под давлением. Дело кончается взрывом. Происходит именно то, что описывает закон Шарля. Растет температура. Одновременно растет давление, так как объем не меняется. Происходит разрушение баллона в момент, когда показатели превышают допустимые. Так что, зная занимаемый объем и один из параметров, можно легко установить значение второго. Хотя газовые законы физики описывают поведение некой идеальной модели, их можно легко применять для предсказания поведения газа в реальных системах. Особенно в быту, изопроцессы могут легко объяснить, как работает холодильник, почему из баллончика освежителя вылетает холодная струя воздуха, из-за чего лопается камера или шарик, как работает разбрызгиватель и так далее.

Читайте также:  Как чем очистить сосуды

Основы МКТ.

Молекулярно-кинетическая теория вещества- способ объяснения тепловых явлений, который связывает протекание теп­ловых явлений и процессов с особенностя­ми внутреннего строения вещества и изу­чает причины, которые обусловливают теп­ловое движение. Эта теория получила при­знание лишь в XX в., хотя исходит из древнегреческого атомного учения о стро­ении вещества.

Молекулярно-кинетическая тео­рия объясняет тепловые явле­ния особенностями движения и взаимодействия микрочастиц вещества

Молекулярно-кинетическая теория основывается на законах классичес­кой механики И. Ньютона, которые позво­ляют вывести уравнение движения микро­частиц. Тем не менее в связи с огромным их количеством (в 1 см 3 вещества находится около 10 23 молекул) невозможно ежесекундно с помощью законов классичес­кой механики однозначно описать движение каждой молекулы или атома. Поэтому для построения современной теории теплоты ис­пользуют методы математической статистики, которые объясняют течение тепловых явле­ний на основании закономерностей поведе­ния значительного количества микрочастиц.

Молекулярно-кинетическая тео­рия построена на основании обобщенных уравнений движе­ния огромного количества мо­лекул.

Молекулярно-кинетическая теория объяс­няет тепловые явления с позиций пред­ставлений о внутреннем строении вещества, то есть выясняет их природу. Это более глубокая, хотя и более сложная теория, которая объясняет сущность тепловых явле­ний и обусловливает законы термодинамики.

Оба существующих подхода – термодинамический подход и молекулярно-кинетическая теория – научно доказаны и взаимно дополняют друг друга, а не проти­воречат друг другу. В связи с этим изучение тепловых явлений и процессов обычно рассматривается с позиций или моле­кулярной физики, или термодинамики, в зависимости от того, как проще изложить материал.

Термодинамический и молекулярно-кинетический подходы взаимно дополняют друг друга при объяснении тепловых явлений и процессов.

Дата добавления: 2018-02-15 ; просмотров: 3048 ;

Источник

Изменение давления газа при изменении обьема и температуры

Уравнение состояния идеального газа определяет связь температуры, объема и давления тел.

  • Позволяет определить одну извеличин, характеризующих состояние газа, по двум другим (используется в термометрах);
  • Определить, как протекают процессы при определенных внешних условиях;
  • Определить, как меняется состояние системы, если она совершает работу или получает тепло от внешних тел.

Уравнение Менделеева-Клапейрона (уравнение состояния идеального газа)

– универсальная газовая постоянная, R = kNA

Уравнение Клапейрона (объединенный газовый закон)

Частными случаями уравнения являются газовые законы, описывающие изопроцессы в идеальных газах, т.е. процессы, при которых один из макропараметров (T, P, V) в закрытой изолированной системе постоянный.

Количественные зависимости между двумя параметрами газа одной и той же массы при неизменном значении третьего параметра называют газовыми законами.

Газовые законы

Закон Бойля – Мариотта

Первый газовый закон был открыт английским ученым Р. Бойлем (1627-1691) в 1660 г. Работа Бойля называлась «Новые эксперименты, касающиеся воздушной пружины». И действительно, газ ведет себя подобно сжатой пружине, в этом можно убедиться, сжимая воздух в обычном велосипедном насосе.

Бойль изучал изменение давления газа в зависимости от объема при постоянной температуре. Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим (от греческих слов isos – равный, therme – тепло).

Независимо от Бойля несколько позднее французский ученый Э. Мариотт (1620-1684) пришел к тем же выводам. Поэтому найденный закон получил название закона Бойля-Мариотта.

Произведение давления газа данной массы на его объем постоянно, если температура не меняется

Закон Гей-Люссака

Сообщение об открытии еще одного газового закона было опубликовано лишь в 1802 г., спустя почти 150 лет после открытия закона Бойля-Мариотта. Закон, определяющий зависимость объема газа от температуры при постоянном давлении (и неизменной массе), был установлен французским ученым Гей-Люссаком (1778- 1850).

Относительное изменение объема газа данной массы при постоянном давлении прямо пропорционально изменению температуры

Закон Шарля

Зависимость давления газа от температуры при постоянном объеме экспериментально установил французский физик Ж. Шарль (1746-1823) в 1787 г.

Ж. Шарль в 1787 г., т. е. раньше, чем Гей-Люссак, установил и зависимость объема от температуры при постоянном давлении, но он своевременно не опубликовал своих работ.

Читайте также:  Рецепты очистки сосудов настойкой чеснока на спирте

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

Закон Бойля-Мариотта – изотермическ ий процесс

Для данной массы газа произведение давления на объем постоянно, если температура не меняется

Закон Гей-Люссака – изобарный процесс

Для данной массы газа отношение объема к температуре постоянно, если давление не меняется

Закон Шарля –

изохорный процесс

Для данной массы газа отношение давления к температуре постоянно, если объем не меняется

Источник

§ 225. Изменение температуры газа при изменении его объема. Адиабатические и изотермические процессы

Мы установили, как зависит давление газа от температуры, если объем остается неизменным. Теперь посмотрим, как меняется давление некоторой массы газа в зависимости от занимаемого ею объема, если температура остается неизменной. Однако прежде чем перейти к этому вопросу, надо выяснить, как поддерживать температуру газа неизменной. Для этого надо изучить, что происходит с температурой газа, если объем его меняется настолько быстро, что теплообмен газа с окружающими телами практически отсутствует.

Произведем такой опыт. В закрытую с одного конца толстостенную трубку из прозрачного материала (плексигласа или стекла) поместим ватку, слегка смоченную эфиром, и этим создадим внутри трубки смесь паров эфира с воздухом, взрывающуюся при нагревании. Затем быстро вдвинем в трубку плотно входящий поршень (рис. 378). Мы увидим, что внутри трубки произойдет маленький взрыв. Это значит, что при сжатии смеси паров эфира с воздухом температура смеси резко повысилась. Это явление вполне понятно. Сжимая газ внешней силой, мы производим работу, в результате которой внутренняя энергия газа должна увеличиться; это и произошло – газ нагрелся.

Рис. 378. Быстро вдвигая поршень в толстостенную стеклянную трубку, мы заставляем вспыхнуть внутри трубки легко воспламеняющуюся ватку

Теперь предоставим газу возможность расширяться и производить при этом работу против сил внешнего давления. Это можно осуществить, например, так (рис. 379). Пусть в большой бутыли находится сжатый воздух, имеющий комнатную температуру. Дадим воздуху в бутыли возможность расширяться, выходя из небольшого отверстия наружу, и поместим в струе расширяющегося воздуха термометр или колбу с трубкой, изображенную на рис. 384. Термометр покажет температуру более низкую, чем комнатная, а капля в трубке, присоединенной к колбе, побежит в сторону колбы, что также будет указывать на понижение температуры воздуха в струе. Значит, когда газ расширяется и при этом совершает работу, он охлаждается и внутренняя энергия его убывает). Ясно, что нагревание газа при сжатии и охлаждение при расширении являются выражением закона сохранения энергии.

Рис. 379. Термометр 2, помещенный в струе расширяющегося воздуха, показывает более низкую температуру, чем термометр 1

Если мы обратимся к микромиру, то явления нагревания газа при сжатии и охлаждении при расширении станут вполне ясными. Когда молекула ударяется о неподвижную стенку и отскакивает от нее, скорость, а следовательно, и кинетическая энергия молекулы в среднем такие же, как и до удара о стенку. Но если молекула ударяется и отскакивает от надвигающегося на нее поршня, ее скорость и кинетическая энергия больше, чем до удара о поршень (подобно тому как скорость теннисного мяча увеличивается, если его ударить во встречном направлении ракеткой). Надвигающийся поршень передает отражающейся от него молекуле дополнительную энергию. Поэтому внутренняя энергия газа при сжатии возрастает. При отскакивании от удаляющегося поршня скорость молекулы уменьшается, ибо молекула совершает работу, толкая отходящий поршень. Поэтому расширение газа, связанное с отодвиганием поршня или слоев окружающего газа, сопровождается совершением работы и приводит к уменьшению внутренней энергии газа.

Итак, сжатие газа внешней силой вызывает его нагревание, а расширение газа сопровождается его охлаждением. Это явление в некоторой мере имеет место всегда, но особенно резко заметно тогда, когда обмен теплотой с окружающими телами сведен к минимуму, ибо такой обмен может в большей или меньшей степени компенсировать изменение температуры. Процессы, при которых теплообмен с внешней средой отсутствует, называют адиабатическими.

Возвратимся к вопросу, поставленному в начале параграфа. Как обеспечить постоянство температуры газа, несмотря на изменение его объема? Очевидно, для этого надо непрерывно передавать газу теплоту извне, если он расширяется, и непрерывно отбирать от него теплоту, передавая ее окружающим телам, если газ сжимается. В частности, температура газа остается практически постоянной, если расширение или сжатие газа производится очень медленно, а теплообмен с внешней средой происходит достаточно быстро. При медленном расширении теплота от окружающих тел передается газу и его температура снижается так мало, что этим снижением можно пренебречь. При медленном сжатии теплота, наоборот, передается от газа к окружающим телам, и вследствие этого температура его повышается лишь ничтожно мало. Процессы, при которых температура поддерживается неизменной, называют изотермическими.

225.1. Почему при накачивании воздуха в велосипедную шину насос заметно нагревается?

Источник

➤Adblock

detector

НазваниеФормулировкаГрафики

Источник