Является ли пластинчатый теплообменник сосудом
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 августа 2019; проверки требуют 11 правок.
Концептуальная схема пластинчатого теплообменника
Отдельная пластина пластинчатого теплообменника
Пластинчатый теплообменник – устройство, в котором осуществляется передача теплоты от горячего теплоносителя к холодной (нагреваемой) среде через стальные, медные, графитовые, титановые гофрированные пластины, которые стянуты в пакет. Горячие и холодные слои перемежаются друг с другом.
Первый агрегат пластинчатого теплообменника в близком к современному виде был изобретён доктором Ричардом Селигманом, основателем компании Aluminium Plant & Vessel Company Limited в 1923 году. Согласно другим источникам, создателем первого современного пластинчатого теплообменника была шведская компания Густава де Лаваля, выпустившая первую модель, предназначавшуюся для пастеризационного оборудования, в 1938 году.[источник не указан 1679 дней]
Устройство и принцип работы[править | править код]
- Неподвижная плита с присоединительными патрубками.
- Задняя прижимная плита.
- Теплообменные пластины с уплотнительными прокладками.
- Верхняя направляющая.
- Нижняя направляющая.
- Задняя стойка.
- Комплект резьбовых шпилек.
Такая конструкция теплообменника обеспечивает эффективную компоновку теплообменной поверхности и, соответственно, малые габариты самого аппарата. Все пластины в пакете одинаковы, только развернуты одна за другой на 180°, поэтому при стягивании пакета пластин образуются каналы, по которым и протекают жидкости, участвующие в теплообмене. Такая установка пластин обеспечивает чередование горячих и холодных каналов.
Теплообменные пластины с уплотнительными прокладками[править | править код]
Основным элементом теплообменника являются теплопередающие пластины, изготовленные из коррозионно-стойких сплавов толщиной 0,4-1,0 мм методом холодной штамповки. В рабочем положении пластины плотно прижаты друг к другу и образуют щелевые каналы. На лицевой стороне каждой пластины в специальные канавки установлена резиновая контурная прокладка, обеспечивающая герметичность каналов. Два из четырёх отверстий в пластине обеспечивают подвод и отвод греющей или нагреваемой среды к каналу. Два других отверстия, дополнительно изолированы малыми контурами прокладки предотвращающими смешение (переток) греющей и нагреваемой сред. Для предупреждения смешивания сред в случае прорыва одного из малых контуров прокладки предусмотрены дренажные пазы.
Пространственное извилистое течение жидкости в каналах способствует турбулизации потоков, а противоток между нагреваемой и греющей средой способствует увеличению температурного напора и, как следствие, интенсификации теплообмена при сравнительно малых гидравлических сопротивлениях. При этом резко уменьшается отложение накипи на поверхности пластин.
При большой разнице в расходе сред, а также при малой разнице в конечных температурах сред существует возможность многократного теплообмена сред путём петлеобразного направления их потоков. В таких теплообменниках патрубки для подвода сред расположены не только на неподвижной плите, но и на прижимной, а вдоль пластин-перегородок среды движутся в одном направлении.
Одним из важнейших элементов в конструкции пластинчатых теплообменников являются прокладки. Уплотнители в теплообменнике изолируют и направляют смежные жидкостные потоки и предотвращают протекание. Элементы представляют собой цельную каучуковую прокладку и фиксируются в специальных пазах по контуру пластины.
Система крепления уплотнений к пластинам используется как клеевое, так и безклеевое с помощью специальных замков. Для производства уплотнений используется 4 типа стандартных материалов (NBR, EPDM, Viton I, Viton S), кроме того, используется ряд материалов разработанных специально для нестандартного применения.
Среди наиболее распространенных уплотнений выделяют следующие виды:
– S187 VITON (FPM)
FP71 NBR (NITRIL)
GL-265 VITON (FPM)
XGM032 VITON GF/STEAM
NT 500M VITON (FPM)
ЭТ014С NBR (NITRIL)
S20 VITON GF/STEAM
NT 250M VITON (FPM)
MA30W-FKMS-C/PEAK RING GASKET (MA30W-FKMS-CLIP-кольцевое)
GL-85 NBR (NITRIL)
ЭТ004C NBR (NITRIL).
Выбор подходящего материала значительно влияет на срок службы прокладок. Но существуют и другие факторы, от которых зависит пригодность уплотнений: температурный режим, перепады давления, агрессивность среды, естественное старение. Установлено, что температура с показателями меньше, чем максимально допустимые, продляет срок эксплуатации.
Схема теплообмена[править | править код]
В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке). В местах их возможного перетекания находится либо стальная пластина, либо двойное резиновое уплотнение, что практически исключает смешение жидкостей.
Вид гофрирования пластин и их количество, устанавливаемое в раму, зависят от эксплуатационных требований к пластинчатому теплообменнику. Материал, из которого изготавливаются пластины, может быть различным: от недорогой нержавеющей стали до различных экзотических сплавов, способных работать с агрессивными жидкостями.
Материалы для изготовления уплотнительных прокладок также различаются в зависимости от условий применения пластинчатых теплообменников. Обычно используются различные полимеры на основе натуральных или синтетических каучуков.
Виды пластинчатых теплообменников[править | править код]
Пластинчатые теплообменники бывают следующих видов:
- разборные пластинчатые теплообменники;
- паяные пластинчатые теплообменники;
- сварные и полусварные пластинчатые теплообменники.
Основные параметры[править | править код]
Для разборных пластинчатых теплообменников характерны следующие параметры:
- материал пластин: тонколистовые стали (AISI304, AISI316), Титан, Hastelloy, 254SMO и др.;
- температура в пластинах носителя не превышает 200°;
- давление в пластинах носителя не превышает 25кгс/см2;
- поверхность теплообмена одного аппарата может значительно колебаться(0,1 и 2100 м2) в зависимости от назначения;
- число пластин также колеблется от самых малых значений(практикуют от 7-10 пластин) и до самых больших.
Литература[править | править код]
- Г. С. Борисов, В. П. Брыков, Ю. И. Дытнерский и др. Основные процессы и аппараты химической технологии: Пособие по проектированию / Ю. И. Дытнерский. – М.: Химия, 1991. – 496 с. – 24 000 экз. – ISBN 5-7245-0133-3.
Источник
Введение
Пластинчатый теплообменник – один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.
Типы, устройство и принцип работы пластинчатых теплообменников
Принцип работы всех пластинчатых теплообменных аппаратов одинаков:
- На входы ТО подаются теплоносители.
- Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
- В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
- С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
- Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.
Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:
Принцип работы пластинчатого теплообменника
Виды пластинчатых теплообменников в зависимости от конструкции:
- разборные;
- паяные;
- сварные;
- полусварные.
Пластинчатые разборные теплообменные аппараты
Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.
Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.
Конструкционная схема разборного теплообменника
Разборный теплообменник состоит из следующих элементов:
- Неподвижная прижимная плита – основной элемент.
- Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
- Пакет пластин – главный функциональный элемент, который образует внутренний контур устройства и осуществляет теплообмен.
- Несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
- Подвижная прижимная плита – прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
- Опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).
Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.
Несомненное достоинство данного вида ТО – возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.
Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.
Паяные теплообменные аппараты
Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета – невозможна.
Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.
Паяный пластинчатый теплообменник в разрезе
Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.
Полусварные теплообменники
Полусварные теплообменные аппараты – агрегаты, в которых пакет пластин сделан комбинированным способом:
- пластины попарно свариваются между собой;
- с внешней стороны такого сдвоенного мини-пакета прикрепляются уплотнения;
- далее прикрепляется следующий сваренный мини-пакет.
Места попарной сварки пластин
Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.
Сварные теплообменники
Сварные теплообменные аппараты – устройства, в которых пластины сварены между собой без использования уплотнителей.
Внешний вид сварного теплообменника
Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:
Принцип работы сварного теплообменника
Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.
Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.
Применение пластинчатых теплообменников
Пластинчатые теплообменные аппараты используются в:
- энергетике;
- отоплении;
- вентиляции и кондиционировании;
- судоходстве;
- пищевой промышленности;
- машиностроении;
- автомобилестроении;
- металлургии.
Технические характеристики пластинчатых теплообменников
Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции:
Разборные | Паяные | Полусварные | Сварные | |
КПД, % | 95 | 90 | 85 | 85 |
Максимальная рабочая температура, °C | 200 | 220 | 350 | 900 |
Максимальное рабочее давление, бар | 25 | 25 | 55 | 100 |
Максимальная мощность, МВт | 75 | 5 | 75 | 100 |
Срок службы, лет | 20 | 20 | 10-15 | 10-15 |
Плюсы и минусы пластинчатых теплообменников
Преимущества:
- Удобство транспортировки и монтажа, поскольку пластинчатый теплообменник имеет меньшие габариты, чем другие виды рекуперативных теплообменных аппаратов.
- Простота обслуживания – разборные, полусварные и сварные теплообменники легко промывать, так как они либо полностью разбираются, как в случае с разборными агрегатами, либо частично, предоставляя доступ к пластинам, как полусварные и сварные аппараты.
- Высокая производительность – КПД пластинчатых агрегатов достигает 95%.
- Цена – стоимость пластинчатых установок ниже, чем аналогичных кожухотрубных, спиральных или блочных агрегатов.
Недостатки:
- Часто требуется заземление. Поскольку пластины имеют малую толщину – они подвержены воздействию блуждающих токов, что приводит к появлению дырок в них.
- Более требовательны к качеству очистки теплоносителя. Так как между пластинами расстояние небольшое, то каналы будут загрязняться быстрее, чем внутренние поверхности кожухотрубного теплообменника, что в свою очередь приводит к снижению коэффициента теплопередачи и, как следствие, КПД пластинчатого теплообменника.
Заключение
Пластинчатый теплообменник – это современный тип теплообменных аппаратов, которые активно вытесняют аналоги устаревших типов, такие как кожухотрубные агрегаты. Этому способствует их компактность, низкая цена и высокие показатели технических характеристик.
В следующей статье мы рассмотрим, как происходит сборка и разборка пластинчатого теплообменника.
Подписывайтесь на наши новости!
Источник
Ростехнадзор разъясняет: Техническое устройство относят к сосудам, работающим под избыточным давлением, при проектировании
При проведении экспертизы технических устройств возник вопрос.
Техническое устройство – масляный холодильник (теплообменник) – цилиндрическая емкость диаметром 800 мм и длиной 6990 мм. Рабочая среда внутри емкости – поглотительное каменноугольное масло, которое относят ко второму классу опасности (вещество высокоопасное) по степени воздействия на организм человека (в соответствии с ГОСТ 12.1.007-76). Согласно п. 2.14 ТУ 14-7-132-91 «Масло поглотительное для улавливания бензольных углеводородов. Технические условия» поглотительное масло – горючая жидкость. Поглотительное масло находится в указанной емкости под давлением 0,5 МПа (5 кгс/см 2 ).
Прошу Вас разъяснить, является ли указанная емкость сосудом, работающим под давлением, если п. 1.1.2 Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 03-576-03), гласит: «Правила распространяются на. сосуды, работающие под давлением пара, газа или токсичных взрывопожароопасных жидкостей свыше 0,07 МПа (0,7 кгс/см 2 )»?
П.В. Сущев, директор некоммерческого партнерства «Содействие предупреждению чрезвычайных ситуаций»
На вопрос читателя отвечает начальник Управления государственного строительного надзора Ростехнадзора А.Н. Горлов.
Техническое устройство относят к сосудам, работающим под избыточным давлением, при проектировании. Характеристики и параметры его безопасной работы указаны в паспорте сосуда изготовителем.
В соответствии с п. 1.1.2 Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 03-576-03), указанные правила распространяются на сосуды, работающие под давлением пара, газа или токсичных взрывопожароопасных жидкостей свыше 0,07 МПа (0,7 кгс/см 2 ). Токсичными взрывопожароопасными жидкостями в данном случае следует считать токсичные жидкости, как взрывоопасные, так и пожароопасные, или обладающие сочетанием этих свойств, т.е. взрывопожароопасные.
Поэтому масляный холодильник (теплообменник), работающий под давлением токсичной пожароопасной жидкости (поглотительного каменноугольного масла) свыше 0,07 МПа, является сосудом, работающим под избыточным давлением, на который распространяется действие ПБ 03-576-03.
Разделы сайта, связанные с этой новостью:
Последовательность событий и новостей по этой теме
(перемещение по новостям, связанным друг с другом)
Источник
Пластинчатые теплообменники
Пластинчатый теплообменник – это сосуд, работающий под давлением, собранный из рифленых определенным образом пластин в пакетную конструкцию и размещенную на направляющих между плитами рамы. При этом пластины, образуют между собой каналы для прохождения потоков рабочей жидкости. Таким образом, циркулирующие вещества, входя и выходя через соединительные отверстия, обмениваются теплом друг с другом. Они как правило перемещаются в противоположных направлениях по щелевидным каналам, которые были образованы плотно прижатыми друг к другу гофрированными пластинами, но так же могут и в попутном направлении. Между собой пластины уплотняются прокладками из различных материалов NBR, EPDM, VITON, PTFE и др..
Схема пластинчатого теплообменника
На данном рисунке наглядно показано, что пластинчатый теплообменник состоит из:
1. Неподвижной передней плиты, которую также называют станиной.
2. Первой пластины (начальной).
3. Левосторонней пластины.
4. Правосторонней пластины.
5. Общего пакета пластин.
6. Левосторонней пластины.
7. Правосторонней пластины.
8. Съемной задней плиты, известной также, как прижимная.
9. Верхней несущей направляющей.
11. Нижней несущей направляющей.
12. Стягивающей шпильки с фиксирующими шайбами и гайками.
И в процессе производства подбор материалов и основных деталей осуществляется в соответствии с назначением будущего теплообменника и требованиями к степени прочности всей конструкции.
Современные пластинчатые теплообменники – это надежное и качественное оборудование с высоким коэффициентом теплопередачи. И ООО ПТК «АЛЕСТ» производит и поставляет именно такие теплообменные системы.
Источник
Пластинчатые теплообменники
Теплообменник и его виды
Теплообменник работает как аппарат-посредник между двумя средами, имеющими разную температуру. Существуют устройства регенеративного и рекуперативного типа, отличающиеся принципом работы.
В регенеративных теплообменниках предусмотрена одна рабочая поверхность, с которой по очереди контактируют жидкие среды. Рекуперативные аппараты имеют стенку из теплопроводного материала, которая отделяет движущиеся среды друг от друга. В промышленности получили распространение устройства именно такого типа.
Разновидности рекуперативных теплообменников:
- Пластинчатые – сборные модификации из соединенных модульных пластин с бесклеевыми термостойкими прокладками между ними (самый популярный вариант);
- Кожухотрубные – сварные или припаянные конструкции из труб, образующих решетку;
- Витые – оснащены концентрическими змеевиками, теплоноситель направляется по спиральной трубе и межтрубному пространству;
- Спиральные – металлические конструкции, изготавливаются из тонких металлических листов, свернутых в своеобразную спираль;
- С водяным или воздушным принципом работы.
Конструкция
К элементам конструкции пластинчатого теплообменника относятся:
- две плиты (фиксированная и прижимная);
- входные и выходные патрубки с соединениями разных типов;
- набор герметично соединенных пластин, направляющих, резьбовых метизов;
- подставка для установки в системе теплоснабжения.
Основной рабочий элемент конструкции – пластины из инертных материалов для передачи энергии между теплоносителями. Выполненные методом штамповки, они устойчивы к коррозии и воздействию любых агрессивных сред.
В собранном виде теплообменный аппарат состоит из плотно (герметично) примыкающих друг к другу пластин. На их стыке образуются каналы (щели). Толщина пластин варьируется от 0,4 до 1 мм. Они не отличаются по форме и выполнены из нержавеющей стали, реже из титана и других дорогих сплавов. Требования к материалу определяются задачами, для которых теплообменник предназначен.
В качестве изолирующего материала чаще всего задействуют каучук или полимерные композиты. При выборе следует учитывать жесткость условий эксплуатации, температурный диапазон, тип рабочей среды.
Рекомендуемые виды полимеров в зависимости от характеристик активных сред:
- вода и гликоль – EPDM;
- масляные и нефтесодержащие теплоносители – Nitril;
- высокотемпературная среда, пар – Viton.
Основные виды пластинчатых теплообменников, их предназначение и преимущества:
1. Разборные (конструкция представляет собой пакет пластин и резиновые уплотнители):
- низкие затраты на производство и монтаж;
- регулируемая, легко настраиваемая производительность;
- несложная дешевая эксплуатация, быстрый ремонт;
- безотказность, минимальные интервалы простоя;
- низкая энергоемкость;
- возможность переработки.
Сфера применения пластинчатого теплообменника с разборной конструкцией: системы отопления, бассейны, холодильное и климатическое оборудование, горячее водоснабжение, теплопункты.
2. Паяные (цельная конструкция со спаянными пластинами, без резиновых прокладок):
- компактность и низкая стоимость;
- оптимальное соотношение производительности и стоимости;
- быстрый и дешевый монтаж и сборка;
- надежность и безотказность.
Область применения паяных конструкций: холодильные аппараты, компрессоры и турбинные установки, кондиционеры и вентиляторы, промышленные установки разного назначения.
3. Сварные и полусварные (соединенные при помощи сварных швов):
- простая компактная конструкция без уплотняющих прокладок;
- регулируемый поток;
- устойчивость к действию агрессивных сред;
- максимальный диапазон температур;
- допустимое давление до 4 МПа, температура до 300 °С;
- простота монтажа;
- устойчивость к абразивным и агрессивным веществам;
- надежность и длительный рабочий ресурс.
Сфера применения сварных и полусварных агрегатов: пищевая, химическая и фармацевтическая отрасль, системы кондиционирования и охлаждения, в том числе в промышленности и медицине, работа тепловых насосов и систем горячего водоснабжения.
Пластинчатые теплообменники – технические характеристики
Пластинчатый теплообменник отличается довольно высокими показателями мощности. Режим температуры теплоносителя может достигать 180 градусов. Надежные пластинчатые теплообменники широко применяются в сферах отопления, энергетики, пищевой промышленности, климатическом, холодильном и вентиляционном оборудовании.
Основные характеристики агрегата будут различаться в зависимости от типа конструкции и модели:
Паяные | Разборные | Полусварные | Сварные | |
---|---|---|---|---|
Наивысший показатель температуры | 220°C | 200°C | 350°C | 900°C |
Наивысший показатель давления | 25 Бар | 25 Бар | 55 Бар | 100 Бар |
Наивысший показатель мощности | 5 Мвт | 75 Мвт | 75 Мвт | 100 Мвт |
КПД | 90% | 95% | 85% | 85% |
Гарантийный срок | 20 лет | 20 лет | 10-15 лет | 10-15 лет |
К стандартным техническим параметрам пластинчатых аппаратов относятся:
- Материал пластин – чаще всего листовая тонкая сталь AISI304 или AISI316, титан, сплавы 254 SMO, хастеллой (на основе никеля).
- Температурный максимум теплоносителя, на который рассчитаны пластины – 180°C.
- Предельное давление среды – 25 кгс/кв.см.
- Площадь поверхности теплообмена – 0,1-2100 кв.м.
- Количество пластин 7-10 штук и более, зависит от сферы применения.
При выборе конкретной модели целесообразно учитывать условия эксплуатации – для большей мощности требуется больше пластин. Их количество определяет производительность и полезное действие системы теплоподачи или охлаждения.
Технические характеристики герметичных пластинчатых теплообменников MIT
Тип | 504 | 513 | 514 | 521 | 522 | 617 |
---|---|---|---|---|---|---|
Ширина, мм | 200 | 360 | 360 | 460 | 460 | 337 |
Высота, мм | 480 | 930 | 930 | 1090 | 1090 | 1047 |
Глубина, мм | 200-400 | 250-1000 | 250-1000 | 250-1500 | 250-1500 | 250-1250 |
Диапазон гор.оси, мм | 70 | 140 | 140 | 210 | 210 | 150 |
Диапазон верт.оси, мм | 381 | 640 | 640 | 720 | 720 | 800 |
Макс. Раб.давл., бар | 20 | 20 | 20 | 20 | 20 | 20 |
Испытательное давл., бар | 25 | 25 | 25 | 25 | 25 | 25 |
Вес, кг | 23+0.25n | 98+0.75n | 98+0.75n | 225+1.1n | 225+1.1n | 116+0.91n |
Диаметр соединения | 1 1/4″ Резьбовое | 2″ Резьбовое или фальцевое | 2″ Резьбовое или фальцевое | 4″ Фальцевое | 4″ Фальцевое | 2 1/2″ Резьбовое или фальцевое |
Более подробную информацию по техническим характеристикам можно узнать в этом каталоге
Технические характеристики сварных пластинчатых теплообменников MIT
Тип | ВЗ-012 | ВЗ-014 | ВЗ-020 | ВЗ-027 | ВЗ-030 |
---|---|---|---|---|---|
Ширина, мм | 72 | 77 | 72 | 111 | 95 |
Высота, мм | 186 | 207 | 314 | 311 | 325 |
Глубина, (мин-макс) | 7+2.3n | 7+2.3n | 7+2.3n | 9+2.4n | 9+1.5n |
Диапазон гор.оси, мм | 40 | 42 | 42 | 50 | 39 |
Диапазон верт.оси, мм | 154 | 172 | 278 | 250 | 269 |
Макс. Раб.давл., бар | 30 | 30 | 30 | 30 | 30 |
Испытательное давл., бар | 45 | 45 | 45 | 45 | 45 |
Вес, кг | 0.6+0.044n | 0.7+0.06n | 1.1+0.09n | 1.2+0.013n | 1+0.09n |
Более подробную информацию по техническим характеристикам можно узнать в этом каталоге
Отраслевое применение пластинчатых теплообменников
На коммунальных объектах
Пластинчатые теплообменники помогают решать широкий спектр задач: подогревать воду для горячего водоснабжения, бойлеров и бассейнов, систем вентиляции и теплых полов. Их часто задействуют в составе независимого контура отопительной системы, питающейся от ТЭЦ или ЦТП. При этом температура не должна превышать 180 °C, давление – 16 кПа.
В пищевой промышленности
Теплообменники как элемент охладительного, испарительного и пастеризующего оборудования незаменимы в производстве молочных продуктов, сахара, растительных масел, пива, спирта. Самые востребованные в пищевой промышленности модификации – разборные и паяные.
Металлургия и судостроение
Многие технологические процессы в металлургии связаны с сильным нагреванием конструкций и агрегатов. Теплообменники охлаждают оборудование и рабочие среды, смазку в гидравлике и травильные растворы. В судостроении теплообменники применяют для охлаждения двигателя, в составе отопительной системы и ГВС.
Теплообменники необходимы, чтобы охлаждать горячие вещества и подогревать жидкости. Они входят в состав сетевых комплексов, систем подготовки воды и аппаратов низкого давления. В нефтегазовом производстве востребованы титановые конструкции с листом до 0,7 мм и уплотнителем из полимеров NBR или «Витон».
Техническое Задание и Опросный лист по отраслям :
Технические преимущества конструкции
Если сравнивать технические параметры с кожухотрубными моделями, можно выделить следующие особенности разборных пластинчатых конструкций:
- Повышенный индекс теплопередачи (3-5 вместо 1);
- Допустимая разность температур рабочих сред всего 1-2% (в кожухотрубных конструкциях 5-10 градусов);
- Есть возможность произвольно менять площадь поверхности, просто добавляя и убирая пластины;
- При сборке не требуется сварка и вальцовка за счет разборной конструкции;
- Более простое обслуживание, осмотр, диагностика неполадок, удобный доступ к внутренним элементам, замена и промывка пластин;
- В 8 раз меньше затраты времени на разборку (15 минут вместо 2 часов);
- Простая и оперативная замена уплотнителей (клей не используется);
- Моментальное обнаружение течи без разборки устройства;
- Неподверженность коррозии и нечувствительность к вибрациям;
- Ресурс безотказной работы до капитального ремонта 20 лет (кожухотрубные модели требуют ремонта через 5-10 лет);
- Пластинчатые агрегаты выигрывают в весе и размерах;
- Не требуется теплоизоляция и специальный фундамент.
Принцип работы и устройство пластинчатого теплообменника
В каждой из пластин для теплоносителя и уплотнения предусмотрено по два отверстия:
- для подведения и отведения разогретого теплоносителя;
- для герметичного соединения пластин и изоляции теплоносителей за счет компактных уплотнителей.
Характерная особенность и преимущество пластинчатого теплообменника в том, что движение теплоносителя сопровождается завихрениями потока, что резко усиливает обмен тепловой энергией. Сопротивление при этом минимальное, что сокращает образование накипи. За счет многократного и интенсивного теплового обмена эффективность работы и КПД пластинчатого теплообменника одни из самых высоких.
Последствия неправильного подбора теплообменника
Для длительной безотказной эксплуатации важно выбрать модель, которая будет оптимальной для конкретных сред, температурных режимов, мощности и периодичности нагрузки. Выбрать подходящий по всем критериям вариант может только специалист. Обращение к профессионалам гарантирует отсутствие поломок в течение всего срока службы устройства. Отпадает необходимость в частом сервисном обслуживании и ремонте. Правильный выбор системы исключает распространенную проблему стекловидной накипи, ведущую к поломкам устройства.
Автоматика и подключение
При монтаже оборудования важно учитывать, что теплообменник всегда работает как элемент системы. Он не используется в качестве самостоятельного аппарата. Вместе с теплообменником в системе задействовано следующее оборудование: обратные клапаны, запорная арматура (комплекс задвижек, заслонок), контрольно-измерительные аппараты – манометры, термометры, циркуляционные насосы и другие виды приборов и агрегатов.
Варианты подключения пластинчатого теплообменника, их достоинства и недостатки.
1. Независимая одноступенчатая параллельная схема.
- Экономичная установка, экономия свободного пространства;
- Простота конструкции.
- Отсутствует подогрев холодного теплоносителя.
2. Двухступенчатая смешанная схема.
- За счет подогрева входящего теплоносителя обратным потоком эффективность увеличивается на 40%.
- При проектировании системы горячего водоснабжения нужно подключать сразу два теплообменника, что удорожает решение.
3. Двухступенчатая последовательная схема.
- Стабилизируется сетевая нагрузка, растет эффективность применения теплоносителя.
- Уменьшаются расходы на 60% в сравнении с параллельной схемой и на 20-25% в сравнении со смешанной.
- Невозможность 100% автоматизации.
Подбор пластинчатого теплообменника
Чтобы правильно подобрать пластинчатый теплообменник, необходимо рассчитать его технические параметры.
За основу берутся следующие данные:
- – схема присоединения ГВС;
- – тепловая нагрузка (мощность);
- – данные о греющей среде:
- температура на входе (для зимы/ лета), в °С;
- температура на выходе (для зимы/ лета), в °С;
- расход среды (если нет данных по мощности), в куб. м/час;
- допустимые потери давления (атм.);
- – данные о нагреваемой среде:
- входная температура (зима/лето), в °С;
- выходная температура (зима/лето), в °С;
- расход среды (если нет данных по мощности), в куб. м/час;
- допустимые потери давления (в атм.);
- запас мощности (в %).
Пример расчета
Пластинчатые теплообменники относятся к индивидуальному инженерному оборудованию, которое отдельно выбирается, настраивается и адаптируется под каждый объект. Укажите нам конкретные технические параметры по вашему проекту, и мы сразу рассчитаем, какое оборудование необходимо в вашем случае.
Чтобы оставить нам данные для расчетов, заполните онлайн форму заявки на сайте, напишите или позвоните. Ниже мы приводим список основных параметров, которые нужны, чтобы рассчитать пластинчатый теплообменник.
- Мощность (нагрузка) – количество тепловой энергии, необходимое для отопления и горячего водоснабжения объекта (измеряется в Гкал/час, ккал/час, кВт/час).
- Температурные графики – какую температуру дает и забирает обратно теплосеть, какой температурной отметки необходимо достичь.
Посмотреть эти характеристики можно в договоре с теплосетью. Там приведены технические условия и прописаны температурные графики, а также мощность, отведенная на отопление и горячее водоснабжение.
Основываясь на предоставленных вами данных, мы рассчитываем теплообменник и информируем вас о его стоимости и условиях поставки. Предоставляем подробный расчет, техническое описание требуемого аппарата с указанием габаритов и веса теплообменника пластинчатого.
Расчет от нашей компании производится с помощью профессионального программного обсечения
Преимущества заказа пластинчатого теплообменника у нас:
- Точный расчет теплообменника. Подбираем адаптированное оборудование под ваш проект.
- Гарантия объективной стоимости. Оптимизируя мощность оборудования, не завышаем цену.
- Оперативно обрабатываем заявки.
- Организуем изготовление, доставку и подключение пластинчатого теплообменника на выгодных условиях.
- Предлагаем оптовые цены за счет прямого сотрудничества с ведущими производителями.
- Несем полную ответственность за соблюдение сроков и качество техники.
Звоните, мы поможем с решением вашей задачи, рассчитаем и спроектируем аппарат, организуем доставку и установку. Предлагаем пластинчатые теплообменники российского производства с высоким КПД и выгодными техническими параметрами и характеристиками. В каталоге представлены приблизительные описания моделей, назначение и особенности эксплуатации теплообменников пластинчатого типа.
Источник
Источник