Электрическая цепь в сосуде

Напоминаем, что в каждой среде есть свои носители электрических зарядов. В металлах ими служат свободные электроны, в электролитах – положительные и отрицательные ионы, в газах – ионы и электроны, полупроводниках – электроны и дырки, в вакууме – электроны. Электрический ток может течь с переносом и без переноса вещества. Перенос вещества осуществляется только ионами.
Электрический ток в электролитах
Электролиты – жидкости, проводящие электрический ток. К ним относят растворы солей, щелочей и кислот.
Положительные ионы (катионы) движутся к катоду, а отрицательные (анионы) – к аноду.
Пример №1. Электрическая цепь, изображенная на рисунке, включает в себя сосуд со слабым раствором поваренной соли (NaCl) и опущенными в него двумя электродами. В каком направлении (вправо, влево, вверх, вниз) будут двигаться ионы натрия при замыкании ключа:
При замыкании ключа в растворе соли начнут образовываться ионы: положительные в виде Na+ и отрицательные в виде Cl-. Положительные ионы будут двигаться к отрицательному электроду (катоду), т.е. вправо.
Электрический ток в полупроводниках
К полупроводникам относят элементы четвертой группы таблицы химических элементов Д.И. Менделеева, которые имеют 4 валентных электрона. Собственная проводимость полупроводников – электронно-дырочная.
При низкой температуре все электроны участвуют в создании ковалентных связей, свободных электронов нет, и полупроводник ведет себя как диэлектрик. При повышении температуры или облучении полупроводников часть ковалентных связей разрушается, и появляются свободные электроны. На месте разрушенной связи возникает электронная вакансия – дырка. Она также перемещается по кристаллу и ведет себя подобно положительной частице.
Зависимость удельного сопротивления полупроводников от температуры и внешнего излучения показана на графике.
В полупроводниках также может осуществляться примесная проводимость.
Донорные примеси – это элементы пятой группы таблицы химических элементов Д.И. Менделеева. Только 4 из 5 валентных электрона участвуют в создании ковалентных связей. Остальные сразу становятся свободными. Полупроводник, основными носителями в котором являются отрицательные электроны, относятся к полупроводникам n-типа.
Акцепторные примеси – элементы третьей группы таблицы химических элементов Д.И. Менделеева. Три валентных электрона устанавливают ковалентные связи, а не месте четвертой появляется дырка. Полупроводник с положительными носителями относится к полупроводникам p-типа.
Применение полупроводниковых приборов
Термисторы – приборы, сопротивление которых изменяется при нагревании. Они позволяют определять малые изменения температуры.
Фоторезисторы – приборы, аналогичные термисторам, но сопротивление в них изменяется не при изменении температуры, а при изменении освещенности.
Полупроводниковый диод – соединение полупроводников двух типов. Обладает односторонней проводимостью.
Электрический ток в вакууме
Получение основных носителей происходит за счет термоэлектронной эмиссией.
Определение
Термоэлектронная эмиссия – процесс испускания электронов при нагревании катода до высокой температуры.
Свойства электронных пучков:
- вызывают нагревание тел;
- при торможении возникает рентгеновское излучение;
- при попадании на некоторые вещества (люминофоры) вызывают их свечение;
- направление электронов может изменять под действием электрического и магнитного полей.
Электрический ток в газах
Электрический ток в газах называют разрядом. Обычно газы состоят из нейтральных молекул, поэтому они являются диэлектриками. Чтобы появились носители электрического заряда, необходима затрата энергии.
Несамостоятельный разряд. При нагреве газа или при облучении его атомов могут отделиться электроны, и атомы превращаются в положительные ионы.
Самостоятельный разряд. В газах при столкновении молекул может освободиться хотя бы один электрон. Если он попадет в электрическое поле, то начнет двигаться с ускорением. Сталкиваясь с нейтральным атомом газа, ускоренный электрон может «выбить» из него другой электрон, превратив сам атом в положительный ион. Электроны будут и дальше ускоряться, разрушая атомы. Ионы создают ток в противоположном направлении. Таким образом, электрический ток в газах создается электронами и ионами.
Задание EF18453
На рис. 1 изображена зависимость силы тока через светодиод D от приложенного к нему напряжения, а на рис. 2 – схема его включения. Напряжение на светодиоде практически не зависит от силы тока через него в интервале значений 0,05 А<I<0,2 А. Этот светодиод соединён последовательно с резистором R и подключён к источнику с ЭДС E1=6 В. При этом сила тока в цепи равна 0,1 А. Какова сила тока, текущего через светодиод, при замене источника на другой с ЭДС E2=4,5 В? Внутренним сопротивлением источников пренебречь.
Алгоритм решения
1.Записать исходные данные.
2.С помощью закона Ома для участка и для полной цепи определить сопротивление на светодиоде.
3.Выполнить решение задачи в общем виде.
4.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• ЭДС первого источника тока: ε1=6 В.
• Сила тока, проходящая через светодиод, подключенный к первому источнику тока: I1 = 0,1 А.
• ЭДС второго источника тока: ε2=4,5 В.
Из рисунка 1 следует, что при силе тока, равной I1= 0,1 А напряжение на светодиоде равно UD = 3 В. По закону Ома для участка цепи напряжение на резисторе, будет равно:
U1=I1R
По закону Ома для полной (замкнутой) цепи, имеем:
ε1=U1+UD
Следовательно:
U1=ε1−UD
Тогда сопротивление резистора равно:
R=ε1−UDI1
Напряжение на светодиоде не зависит от силы тока, проходящего через него в интервале значений (это следует из графика рис. 1), поэтому U2=ε2−UDдля любой силы тока из этого интервала значений, следовательно, сила тока в цепи при изменении ЭДС источника:
I2=U2R=ε2−UDR=I1ε2−UDε1−UD
I2=0,14,5−36−3=0,05 (А)
Ответ: 0,05
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алиса Никитина | ???? Скачать PDF | Просмотров: 1.5k | Оценить:
Источник
Электрический ток – направленное, упорядоченное движение электрических зарядов.
Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.
Обрати внимание!
Условия существования электрического тока:
• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.
Электрическое поле создают источники электрического тока.
Источник тока – это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.
В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.
Существуют различные виды источников тока:
• Механический источник тока – механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.
Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.
• Тепловой источник тока – внутренняя энергия преобразуется в электрическую энергию.
К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.
• Световой источник тока – энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.
При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.
• Химический источник тока – внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент.
Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень – положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.
Из нескольких гальванических элементов можно составить батарею.
Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.
Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой – отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В них используется раствор щёлочи и пластины: одна – из спрессованного железного порошка, а вторая – из пероксида никеля.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.
Элементы электрической цепи:
- источник напряжения;
- потребители: резисторы, лампы, реостат…
- измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
- соединительные провода;
- ключи для размыкания и переключения цепи.
Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.
Источник ЭДС (идеальный источник напряжения) – двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.
Источник электрического тока – двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.
Необходимое условие существования тока – замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.
Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.
Приборы на схемах обозначают условными знаками. Вот некоторые из них:
Гальванический элемент или аккумулятор | Батарея элементов и аккумуляторов | Ключ | Электрическая лампочка накаливания | Электрический звонок | Резистор |
Двигатель | Генератор | Мотор | Клеммы | Провод | Пересечение проводов без соединения | Соединение проводов |
Источники:
https://www.fizika.ru/kniga/index.php?mode=paragraf&theme=09&id=9010
https://files.school-collection.edu.ru/dlrstore/669ba06a-e921-11dc-95ff-0800200c9a66/3_8.swf
Источник
У этого термина существуют и другие значения, см. Цепь (значения).
Электри́ческая цепь (гальвани́ческая цепь) – совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.
Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).
Виды электрических цепей[править | править код]
Неразветвлённые и разветвлённые электрические цепи[править | править код]
Рисунок 1 – Разветвлённая цепь
Электрические цепи подразделяют на неразветвлённые и разветвлённые. Во всех элементах неразветвлённой цепи течёт один и тот же ток. Простейшая разветвлённая цепь изображена на рисунке 1. В ней имеются три ветви и два узла. В каждой ветви течёт свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течёт одинаковый ток) и заключённый между двумя узлами. В свою очередь, узел есть точка цепи, в которой сходятся не менее трёх ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 1), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом.
Линейные и нелинейные электрические цепи[править | править код]
Линейной электрической цепью называют такую цепь, все компоненты которой линейные. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и катушки индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат – ток.
В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.
Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.
Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть применён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные, являются практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).
Законы, действующие в электрических цепях[править | править код]
- Закон Ома – устанавливает зависимость тока, протекающего в проводнике, от сопротивления этого проводника и напряжения в выбранном участке электрической цепи.
- Теорема Тевенена
- Правило токов Кирхгофа – говорит о том, что сумма токов, входящих в узел, равна сумме токов, выходящих из этого узла.
- Правило напряжений Кирхгофа
См. также[править | править код]
- Теория электрических цепей
- Последовательное и параллельное соединение
- Короткое замыкание
- Электрическая сеть
- Электростатическая цепь
Литература[править | править код]
- Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов. – 7-е изд., стер.- М.: Высш. шк., 2003.- 542 с.: ил. ISBN 5-06-003595-6
- Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. – М.: Гардарики, 2002. – 638 с. – ISBN 5-8297-0026-3.
Ссылки[править | править код]
- Нелинейные электрические цепи
- Практическая электро-радиотехника для менеджеров и монтажников
Источник
Электрической цепью называют набор устройств, предназначенных для прохождения по ним электрического тока. Назначение электроцепи – транспортировка электроэнергии потребителю для ее последующего преобразования в другие виды энергии: механическую, тепловую, световую или электрохимическую. Из каких элементов состоят электрические цепи и как обозначаются на графических схемах – об этом рассказывается в данной статье.
Составные части
Любая электрическая цепь имеет следующие базовые элементы: источник тока, потребители тока, соединительные провода. Потребители тока могут состоять из более мелких элементов второго уровня, каждый из которых имеет свое наименование, функцию и параметры.
Для удобства электрические цепи изображают в виде графических схем, в которых используются общепринятые условные символы различных элементов. Обозначения элементов электрических цепей имеют интернациональный характер, классифицированы и систематизированы.
Рис. 1. Обозначения базовых элементов электрических схем:.
Разновидности цепей
Различают цепи для постоянного и переменного токов. Постоянный ток не меняет своего направления. Пример сети постоянного тока – электрические цепи автомобилей. Переменный ток меняет свое направление с определенной частотой. График зависимости переменного тока от времени в нашей сети имеет синусоидальный вид. Полярность изменяется 50 раз в секунду, что соответствует частоте 50 Гц. Под внутренней частью цепи подразумевают источники электропитания. Под внешней – провода, переключатели, бытовые и измерительные приборы.
Элементы цепи
Все электрические цепи служат для производства, передачи и потребления электрической энергии. Элементы цепей подразделяются на пассивные и активные. К пассивным относятся потребляющие и передающие электроэнергию: лампочки, нагревательные элементы, электродвигатели и т.п. К активным — источники, генерирующие электроэнергию: аккумуляторы, генераторы, солнечные батареи, термодатчики. Кроме этого элементы делятся на двухполюсные (два вывода) и многополюсные ( три и более выводов).
Пример двухполюсника – резистор. Пример трехполюсника – транзистор.
Примеры составных частей электрической цепи:
- Источник. Обычно это аккумулятор, гальванический элемент или генератор. Реже, но бывают солнечные батареи или ветрогенераторы;
- Проводник. Необходимый элемент для транспортировки электроэнергии от источника к потребителю;
- Потребитель. Осветительные и нагревательные приборы, двигатели, бытовая техника, компьютеры;
- Переключающие (коммутирующие) устройства. В простейшем варианте – выключатель.
Электрический ток течет только по замкнутой цепи. Если цепь разомкнуть, то движение электронов прекратится.
Потребители электроэнергии
Перечислим основных потребителей:
- Резисторы – потребители, которые могут иметь как постоянное, так и переменное сопротивление;
- Конденсаторы – потребители, имеющие емкостные свойства;
- Индуктивности – потребители, создающие магнитное поле;
- Электродвигатель – потребитель, преобразующий электрическую энергию в механическую.
Рис. 2. Резисторы, конденсаторы, индуктивности, электродвигатель:.
Контур, узел, ветвь
Для описания и анализа схем используются следующие термины:
- Ветвь – участок с одним или несколькими компонентами соединенными последовательно;
- Узел – место соединения двух и более ветвей;
- Контур – совокупность ветвей, образующих для тока замкнутый контур. Один из узлов в контуре должен быть и началом и концом пути. Остальные узлы должны встречаться не более одного раза.
Очень полезным элементом электрической цепи является предохранитель. Он предотвращает перегорание элементов цепи в случае перегрева. Предохранитель содержит легкоплавкий проводник, который перегорает в случае превышения допустимых параметров. Поменять предохранитель легче, чем найти сгоревший элемент среди сотен подобных элементов.
Рис. 3. Примеры участков схем: ветвь, узел, контур:.
Что мы узнали?
Итак, мы узнали что такое электрическая цепь и ее составные части. Все электрические цепи состоят из источников, проводников, потребителей и переключающих устройств.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
-
Ирина Чулкова
5/5
Fluffox Furry
5/5
Оценка доклада
Средняя оценка: 4.6. Всего получено оценок: 236.
Источник