Как найти давление во всем сосуде
II. Молекулярная физика
Тестирование онлайн
Давление
Это физическая скалярная величина, которая определяется по формуле
Атмосферное давление
Атмосфера — это воздушная оболочка Земли, которая удерживается гравитационными силами. Атмосфера имеет вес и давит на все тела на Земле. Давление атмосферы составляет около 760 мм.рт.ст. или 1 атм., или 101325Па. Миллиметр ртутного столба, атмосфера — это различные внесистемные единицы измерения давления. Атмосферное давление уменьшается на 1 мм.рт.ст. при поднятии над Землей на каждые 11м.
Что такое давление в 1 атм? Рукопожатие крепкого мужчины составляет 0,1 атм, удар боксера составляет несколько атмосферных единиц. Давление каблука-шпильки составляет 100 атмосфер. Если на ладонь положить гирю в 100 кг, то получим неравномерное давление в одну атмосферу, при погружении на 10 м под воду получим равномерное давление в 1 атмосферу. Равномерное давление легко переносится человеческим организмом. Нормальное атмосферное давление, которое действует на каждого человека, компенсируется внутренним давлением, поэтому его мы совершенно не замечаем, несмотря на то, что оно является достаточно существенным.
Закон Паскаля
Давление на жидкость или газ передается во всех направлениях одинаково.
Давление внутри жидкости (газа) на одной и той же глубине одинаково во всех направлениях (влево вправо, вниз и вверх!)
Гидростатическое давление
Это давления столбика жидкости на дно сосуда. Какая сила создает давление? Жидкость обладает весом, который давит на дно.
Давление жидкости на дно
Давление на дно сосуда не зависит от формы сосуда, но зависит от площади его дна. При этом сила давления на дно может быть и больше и меньше силы тяжести жидкости в сосуде. В этом заключается «гидростатический парадокс».
На стенку сосуда гидростатическое давление распределено неравномерно: у поверхности жидкости оно равно нулю (без учета атмосферного давления), внутри жидкости изменяется прямо пропорционально глубине и на уровне дна достигает значения
. Это переменное давление можно заменить средним давлением
Сообщающиеся сосуды
Это сосуды, которые имеют общий канал внизу.
Однородная жидкость устанавливается в сообщающихся сосудах на одном уровне независимо от формы сосудов, как видно на фотографии.
Разнородные жидкости устанавливаются в сообщающихся сосудах согласно формуле
Гидравлический пресс
Гидравлический пресс состоит из двух сообщающихся сосудов цилиндрической формы. В сосудах двигаются поршни с площадями S1 и S2. Цилиндры заполнены техническим маслом.
Объем жидкости, вытесненный малым поршнем поступает в большой цилиндр.
Гидравлический пресс дает выигрыш в силе во столько раз, во сколько площадь большего поршня больше площади меньшего. Выигрыша в работе гидравлический пресс не дает.
На практике вследствие наличия трения:
Давление не перпендикулярной к поверхности силы
Если сила направлена под углом к нормали (перпендикуляру), то давление определяется по формуле
Практическое применение
Газы и жидкости, находящиеся под давлением, нашли широкое применение в промышленной технике. Например, пневматический отбойный молоток. При помощи сжатого воздуха работают также двери в автобусах и метро, тормоза поездов и грузовых автомобилей.
Встречаются также механизмы, работающие при помощи сжатой жидкости. Они называются гидравлическими. Например, устройство гидравлического пресса.
Атмосферное давление открытие и измерение
Численное значение атмосферного давления было определено опытным путем в 1643 году итальянским ученым Э.Торричелли.
Стеклянную трубку длиной около метра, запаянную с одного конца, наполняют доверху ртутью. Затем, плотно закрыв отверстие пальцем, трубку переворачивают и опускают в чашу со ртутью, после чего палец убирают. Ртуть из трубки начинает выливаться, но не вся: остаётся «столб» » 76 см высотой, считая от уровня в чаше. Примечательно, что эта высота не зависит ни от длины трубки, ни от глубины её погружения.
Атмосферное давление уравновешивает гидростатическое давление столбика ртути. Согласно закону Паскаля давление атмосферы давит вверх на столбик ртути. А столбик ртути давит вниз своим весом. Ртуть перестает опускаться, когда эти давления одинаковые. Вычислив гидростатическое давление ртути известной высоты, определили давление атмосферы.
Трубка Торричелли с линейкой является простейшим барометром – прибором для измерения атмосферного давления
Для измерения атмосферного давления используют также барометр-анероид.
Поскольку атмосферное давление уменьшается по мере удаления от поверхности Земли, то шкалу анероида можно проградуировать в метрах. В этом случае он называется альтиметром.
Возникновение силы Архимеда
Пусть прямоугольный металлический брусок площадью основания S и высотой h лежит на дне сосуда, в который налита вода до высоты H, H>h. Как определить силу давления бруска на дно сосуда?
Возможны два случая! Пусть брусок неплотно прилегает ко дну сосуда, тогда снизу на брусок действует сила давления жидкости. Эта сила больше силы давления жидкости сверху, поэтому возникает сила Архимеда. Сила Архимеда — результат разницы силы гидростатического давления на нижнюю грань бруска и верхнюю грань, зависит от высоты бруска и площади основания.
Используем 2 закон Ньютона:
Рассмотрим второй возможный случай. Пусть брусок прилегает ко дну так плотно, что жидкость под него не подтекает. Снизу отсутствует давление жидкости, следовательно сила Архимеда равна нулю. Сверху же на брусок действует сила давления жидкости и атмосферы.
Используем 2 закон Ньютона для этого случая:
p — атмосферное давление,
p — гидростатическое давление столба жидкости высотой H-h.
Источник
1.5. Гидростатика
Давление. Сила давления
Давление равно отношению силы давления к площади. Это универсальное определение относится к твердым телам, жидкости, газу.
Способы увеличения давления: увеличить силу; уменьшить площадь. Давление в твердых телах передается в том же направлении, в котором действует сила. При решении задач (например, тело на наклонной плоскости) рассматриваются проекции сил — давление тела на плоскость и реакция опоры — на оси координат. Направление движения тела, при действии несколкиз сил, не совпадает с направлением силы давления на тело.
Гидростатика. Закон Паскаля: давление, производимое на жидкость или газ, передается жидкостью или газом во все стороны одинаково. Это связано с подвижностью молекул в жидком и газообразном состояниях.
Давление столба жидкости:
(ро же аш), где ρ — плотность жидкости, g — ускорение свободного падения.
h – высота столба жидкости или глубина, на котороей измеряется давление.
Сила давления: F = p S . Используя две формулы, находим силу давления на дно сосуда, на боковую грань аквариума и т.п. Экзаменационные задачи на эту тему простые; вычисляйте всё в системе СИ.
Гидростатический парадокс (следствие закона Паскаля): давление на дно сосуда определяется только высотой столба жидкости. И не только на дно, но и вообще на данной глуибне. Независимо от фомы сосуда и его размеров (см. формулу выше).
Поэтому в трех сосудах давление на дно одинаково.
Но сила давления разная — не путаем понятия!
Сообщающиеся сосуды
Сообщающиеся сосуды – сосуды, соединенные между собой (трубкой) или имеющие общее дно.
Уровень жидкости в сообщающихся сосудах располагается горизонтально, если:
поверхности жидкости открыты;
в сосуды налита однородная жидкость;
ни один из сосудов не является капилляром;
в жидкостях нет пузырьков с воздухом.
Давление столбов жидкости на одном горизонтальном уровне одинаково:
Гидравлический пресс – простой механизм, дающий выигрыш в силе. Он представляет собой сообщающиеся сосуды разного сечения. В основе его действия лежит закон Паскаля.
Внешняя сила, действующая на малый поршень, совершает работу. Давление в жидкости одинаково. (Высота столбов жидкостей в цилиндрах пресса меняется, но в задачах это не учитывается.
Такой пресс может работать в любом положении и в невесомости.)
Сила давления жидкости, действующая на большой поршень совершает полезную работу. Из меньшего цилиндра в больший перемещается некоторый объем жидкости — при этом перемещение меньшего поршня больше. Выигрыш в силе аналогичен действию рычага. Затрачиваемая и совершаемая работы одинаковы (если КПД 100%).
Источник
Гидростатический парадокс или парадокс Паскаля
Гидростатический парадокс или парадокс Паскаля — явление, при котором сила весового давления налитой в сосуд жидкости на дно сосуда может отличаться от веса налитой жидкости. В сосудах с увеличивающимся кверху поперечным сечением сила давления на дно сосуда меньше веса жидкости, в сосудах с уменьшающимся кверху поперечным сечением сила давления на дно сосуда больше веса жидкости. Сила давления жидкости на дно сосуда равна весу жидкости лишь для сосуда цилиндрической формы. Математическое объяснение парадоксу было дано Симоном Стевином в 1612 году.
Причины
Причина гидростатического парадокса состоит в том, что по закону Паскаля жидкость давит не только на дно, но и на стенки сосуда.
Если стенки сосуда вертикальные, то силы давления жидкости на его стенки направлены горизонтально и не имеют вертикальной составляющей. Сила давления жидкости на дно сосуда в этом случае равна весу жидкости в сосуде. Если же сосуд имеет наклонные стенки, давление жидкости на них имеет вертикальную составляющую. В расширяющемся кверху сосуде она направлена вниз, в сужающемся кверху сосуде она направлена вверх. Вес жидкости в сосуде равен сумме вертикальных составляющих давления жидкости по всей внутренней площади сосуда, поэтому он и отличается от давления на дно.
Опыт Паскаля
В 1648 году парадокс продемонстрировал Блез Паскаль . Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.
Гидростатический парадокс и закон Архимеда
Похожий кажущийся парадокс возникает при рассмотрении закона Архимеда . Согласно распространённой формулировке закона Архимеда , на погружённое в воду тело действует выталкивающая сила, равная весу воды, вытесненной этим телом. Из такой формулировки можно сделать неверное умозаключение, что тело не сможет плавать в сосуде, не содержащем достаточное количество воды для вытеснения.
Однако на практике тело может плавать в резервуаре с таким количеством воды, масса которой меньше массы плавающего тела. Это возможно в ситуации, когда резервуар лишь ненамного превышает размеры тела. Например, когда корабль стоит в тесном доке, он остаётся на плаву точно так же, как в открытом океане, хотя масса воды между кораблём и стенками дока может быть меньше, чем масса корабля.
Объяснение парадокса заключается в том, что архимедова сила создаётся гидростатическим давлением, которое зависит не от веса воды, а только от высоты её столба. Как в гидростатическом парадоксе на дно сосуда действует сила весового давления воды, которая может быть больше веса самой воды в сосуде, так и в вышеописанной ситуации давление воды на днище корабля может создавать выталкивающую силу, превышающую вес этой воды.
Более корректной формулировкой закона Архимеда является следующая: на погружённое в воду тело действует выталкивающая сила, эквивалентная весу воды в погружённом объёме тела.
Источник
Источник
Давление жидкости на дно и стенки сосуда. Формула гидростатического давления
Поскольку на жидкость действует сила тяжести, жидкое вещество обладает весом. Вес — это сила, с которой оно давит на опору, т. е. на дно сосуда, в который налито. Закон Паскаля говорит: давление на жидкость передается в любую ее точку, не меняя своей силы. Как же рассчитать давление жидкости на дно и стенки сосуда? Будем разбираться в статье, используя наглядные примеры.
Представим, что у нас есть цилиндрический сосуд, в который налита жидкость. Обозначим высоту слоя жидкости h, площадь дна сосуда — S, а плотность жидкости — ρ. Искомое давление — это P. Его вычисляют путем деления силы, действующей под углом 90° к поверхности, на площадь этой поверхности. В нашем случае поверхность — это дно емкости. P = F/S.
Сила давления жидкости на дно сосуда — это вес. Он равен силе давления. Наша жидкость неподвижна, поэтому вес равен силе тяжести (Fтяж ), действующей на жидкость, а значит, и силе давления (F=Fтяж). Fтяж находят так: умножают массу жидкости (m) на ускорение свободного падения (g). Масса может быть найдена, если известно, какова плотность жидкости и каков ее объем в сосуде. m = ρ×V. Сосуд имеет цилиндрическую форму, поэтому его объем мы будем находить, умножив площадь основания цилиндра на высоту слоя жидкости (V = S×h).
Расчет давления жидкости на дно сосуда
Вот величины, которые мы можем вычислить: V = S×h; m = ρ×V; F = m×g. Подставим их в первую формулу и получим такое выражение: P = ρ×S×h×g/S. Сократим площадь S, стоящую в числителе и знаменателе. Она исчезнет из формулы, а это значит, что давление на дно не зависит от площади сосуда. Кроме того, оно не зависит и от формы емкости.
Давление, которое жидкость создает на дно сосуда, называется гидростатическим. «Гидро» — это «вода», а статическое — это потому, что жидкость неподвижна. По формуле, полученной после всех преобразований (P = ρ×h×g), определите давление жидкости на дно сосуда. Из выражения видно, что чем более плотная жидкость, тем больше ее давление на дно сосуда. Разберем подробнее, что собой представляет величина h.
Давление в толще жидкости
Допустим, мы нарастили сосуд снизу еще на некоторую величину, добавили дополнительное пространство для жидкости. Если мы поместим в емкость рыбку, давление на нее будет одинаковым в сосуде из предыдущего опыта и во втором, увеличенном? Изменится ли давление от того, что под рыбкой еще есть вода? Нет, потому что сверху находится определенный слой жидкости, на нее действует сила тяжести, значит, вода обладает весом. А то, что снизу, не имеет никакого значения. Следовательно, мы можем найти давление в самой толще жидкости, и h — это будет глубина. Она необязательно является расстоянием до дна, дно может быть и ниже.
Представим, что мы развернули рыбку на 90°, оставив ее на той же глубине. Изменится ли от этого давление на нее? Нет, потому что на глубине оно одинаково во всех направлениях. Если мы приблизим рыбку прямо к стенке сосуда, изменится ли давление на нее, если она будет оставаться на той же глубине? Нет. Во всех случаях давление на глубине h будет вычисляться по той же формуле. Значит, эта формула позволяет найти давление жидкости на дно и стенки сосуда на глубине h, т. е. в толще жидкости. Чем глубже, тем оно больше.
Давление в наклонном сосуде
Представим, что у нас есть трубка длиной около 1 м. Мы налили в нее жидкость так, что она заполнена целиком. Возьмем точно такую же трубку, наполненную до краев, и разместим ее под наклоном. Сосуды одинаковы и заполнены одной и той же жидкостью. Следовательно, масса и вес жидкости и в первой, и во второй трубке равны. Будет ли одинаковым давление в точках, расположенных на дне этих емкостей? На первый взгляд кажется, что давление P1 равно P2, поскольку масса жидкостей одинакова. Предположим, что это так, и проведем эксперимент, чтобы проверить.
Соединим нижние части этих трубок маленькой трубочкой. Если наше предположение о том, что P1 = P2, верное, то перетечет ли куда-то жидкость? Нет, потому что на ее частицы будут действовать силы противоположного направления, которые будут компенсировать друг друга.
Давайте приделаем к наклонный трубке сверху воронку. А на вертикальной трубке проделаем отверстие, в него вставим трубочку, которая загибается вниз. Давление на уровне отверстия больше, чем на самом верху. Значит, жидкость будет перетекать по тоненькой трубочке и наполнять воронку. Масса жидкости в наклонной трубке будет увеличиваться, жидкость потечет из левой трубки в правую, затем будет подниматься и циркулировать по кругу.
А теперь установим над воронкой турбину, которую соединим с электрическим генератором. Тогда эта система самостоятельно, без какого-либо вмешательства будет вырабатывать электроэнергию. Она будет работать без остановки. Казалось бы, это и есть «вечный двигатель». Однако еще в XIX веке Французская академия наук отказалась принимать любые подобные проекты. Закон сохранения энергии говорит о том, что создать «вечный двигатель» невозможно. Значит, наше предположение о том, что P1 = P2, неверное. На самом деле P1 28 марта, 2019
Источник
Все, что необходимо знать о силе давления воды
Пловец, нырнувший глубоко, ощущает боль в ушах. На барабанные перепонки воздействует сила давления воды.
Корабль в воде не тонет благодаря выталкивающей силе. Вода способна легко изменять свою форму, она воздействует на поверхности тел при соприкосновении с ними.
Чему равна сила давления воды и что это такое, расскажем в статье.
Что это такое?
В сосуде, заполненном водой, на дно давит сила, равная весу столба жидкости. Это вызванное силой тяжести давление называется гидростатическим.
Законы гидростатики описал Блез Паскаль. В 1648 г. он удивил горожан опытом, демонстрирующим свойства воды.
Вставив в бочку, заполненную водой, длинную узкую трубку, он налил в нее несколько кружек воды, и бочку разорвало.
Согласно закону Паскаля, приложенное к H2O усилие распространяется равномерно во всем объеме. Это объясняется тем, что вода почти не сжимается. В гидравлических прессах используют это свойство.
Плотность воды все же растет при высоком давлении. Это учитывается при расчетах конструкций глубоководных аппаратов.
Факторы, влияющие на показатель
При отсутствии внешнего воздействия, играют роль два фактора:
Выше уровень воды, налитой в сосуд, — выше напор на дно. Если в одной емкости ртуть, а в другой вода и при этом уровни жидкостей одинаковы, то в первом случае давление на дно больше, так как ртуть имеет большую плотность.
Если же к поверхности приложить поршень и давить на него, то напор будет складываться из:
При этом форма сосуда не определяет размер усилия, создаваемого столбом. Оно будет одним и тем же при равной высоте столба, хотя стенки емкости могут расширяться кверху или сужаться.
На дно и стенку сосуда – в чем разница?
Вода, заполняющая емкость, оказывает давление по направлению всегда перпендикулярно поверхности твердого тела, по всей площади соприкосновения с дном и стенками.
Усилие на дно распределено равномерно, то есть оно одинаково в любой точке. Заполнив водой сито, можно увидеть, что струи, текущие через отверстия, равны по напору.
Единицы измерения
Давление воды измеряют в:
- паскалях – Па;
- метрах водяного столба – м. в. ст.
- атмосферах – атм.
Практически достаточно знать, что 1 атмосфера равна 10 метрам водяного столба или 100000 Па (100кПа).
Формулы расчета
Давление на дно сосуда рассчитывается делением силы на площадь, то есть оно равно произведению плотности воды, высоты столба и ускорения свободного падения g (величина постоянная, равна 9,8 м/с2).
Пример расчета: бак наполнен водой (плотность 1000 кг/м3) до высоты 1,2 м. Нужно найти, какое давление испытывает дно бака. Решение: P = 1000*1, 2*9, 8 = 11760 Па, или 11, 76 кПа.
Для расчета давления на стенки сосуда применяют все ту же формулу напора, приведенную выше. При расчете берется глубина от точки, в которой нужно рассчитать напор, до поверхности воды.
Пример расчета: на глубине 5 м на стенку резервуара с водой будет оказываться давление P=1000 *5 * 9, 8=49000 кПа, что составляет 0,5 атмосферы.
Расчет давления воды на дно и стенки сосуда в видео:
Применение на практике
Примеры использования знаний свойств воды:
- Подбирая насос для водоснабжения дома высотой 10 м, понимают, что напор должен быть минимум 1 атм.
- Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
- Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
- Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.
Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:
- выжимка масла из семян растений;
- спуск на воду со стапелей построенного судна;
- ковка и штамповка деталей;
- домкраты для подъема грузов.
Заключение
Такие свойства воды, как текучесть и несжимаемость, дают возможность использовать силу ее давления для самых различных целей.
Опасность этого явления учитывают при расчетах на прочность корпусов подводных лодок, стенок и днищ резервуаров, в которых хранят воду. Сила давления воды совершает полезную работу, она же способна и разрушать.
Источник
Статика. Давление покоящейся жидкости на дно и стенки сосуда (гидростатическое давление).
Жидкости (и газы) передают по всем направлениям не только внешнее давление, но и то давление, которое существует внутри них благодаря весу собственных частей.
Давление, оказываемое покоящейся жидкостью, называется гидростатическим.
Получим формулу для расчета гидростатического давления жидкости на произвольной глубине h (в окрестности точки A на рисунке).
Сила давления, действующая со стороны вышележащего узкого столба жидкости, может быть выражена двумя способами:
1) как произведение давления p в основании этого столба на площадь его сечения S:
2) как вес того же столба жидкости, т. е. произведение массы m жидкости на ускорение свободного падения:
Масса жидкости может быть выражена через ее плотность p и объем V:
а объем — через высоту столба и площадь его поперечного сечения:
Подставляя в формулу (1.28) значение массы из (1.29) и объема из (1.30), получим:
Приравнивая выражения (1.27) и (1.31) для силы давления, получим:
Разделив обе части последнего равенства на площадь S, найдем давление жидкости на глубине h:
Это и есть формула гидростатического давления.
Гидростатическое давление на любой глубине внутри жидкости не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободного падения и глубины, на которой определяется давление.
Важно еще раз подчеркнуть, что по формуле гидростатического давления можно рассчитывать давление жидкости, налитой в сосуд любой формы, в том числе, давление на стенки сосуда, а также давление в любой точке жидкости, направленное снизу вверх, поскольку давление на одной и той же глубине одинаково по всем направлениям.
Гидростатический парадокс .
Гидростатический парадокс — явление, заключающееся в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления жидкости на дно сосуда.
В данном случае под словом «парадокс» понимают неожиданное явление, не соответствующее обычным представлениям.
Так, в расширяющихся кверху сосудах сила давления на дно меньше веса жидкости, а в сужающихся — больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на разный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде.
Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости: p = pgh (формула гидростатического давления жидкости). А так как площадь дна у всех сосудов одинакова, то и сила, с которой жидкость давит на дно этих сосудов, одна и та же. Она равна весу вертикального столба ABCD жидкости: P = oghS, здесь S — площадь дна (хотя масса, а следовательно, и вес в этих сосудах различны).
Гидростатический парадокс объясняется законом Паскаля — способностью жидкости передавать давление одинаково во всех направлениях.
Из формулы гидростатического давления следует, что одно и то же количество воды, находясь в разных сосудах, может оказывать разное давление на дно. Поскольку это давление зависит от высоты столба жидкости, то в узких сосудах оно будет больше, чем в широких. Благодаря этому даже небольшим количеством воды можно создавать очень большое давление. В 1648 г. это очень убедительно продемонстрировал Б. Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, вылил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.
Источник
Источник