Как найти количество молекул в сосуде

Подробности

Просмотров: 621

МКТ – это просто!

«Ничто не существует, кроме атомов и пустого пространства …» – Демокрит
«Любое тело может делиться до бесконечности» – Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ – это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела – это большие тела, состоящие из огромного числа молекул.
Тепловые явления – явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
– механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

– диффузия; броуновское движение частиц в жидкости под ударами молекул;

– плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
– фотографирование, определение размеров частиц.

Как найти количество молекул в сосуде

Броуновское движение

Броуновское движение – это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
– открыто английским ботаником  Р. Броуном в 1827 г.
– дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
– экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.

Число молекул в веществе

где V – объем вещества, Vo – объем одной молекулы

Масса одной молекулы

где m – масса вещества,
N – число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина – относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель – это масса молекулы, а знаменатель – 1/12 массы атома углерода

– это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель – это масса атома, а знаменатель – 1/12 массы атома углерода

– величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N – число молекул в теле, а Na – постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль – это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!

Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса  (M) – это масса вещества, взятого  в одном моле, или иначе – это масса одного моля вещества.

где

– масса молекулы
– постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества

и формула для 7 класса

Количество вещества

Число молекул в веществе

Молярная масса

Масса одной молекулы

Связь между относительной молекулярной массой и молярной массой

Молекулярная физика. Термодинамика – Класс!ная физика

Основные положения МКТ. Масса и размер молекул. Количество вещества. —
Взаимодействие молекул. Строение твердых тел, жидкостей и газов. —
Идеальный газ. Основное уравнение МКТ. —
Температура. Тепловое равновесие. Абсолютная шкала температур. —
Уравнение состояния идеального газа. —
Изопроцессы. Газовые законы. —
Взаимные превращения жидкостей и газов. Влажность воздуха. —
Твердые тела. Кристаллические тела. Аморфные тела.

Источник

Всё состоит из молекул

Все, что нас окружает, состоит из мельчайших частиц: атомов и молекул. И не важно что это: стул, на котором мы сидим, монитор компьютера, в который мы смотрим, чай в кружке, который давно уже остыл, дожидаясь нас на кухне, все это — атомы и молекулы. Да что уж говорить, наше тело — это тоже атомы и молекулы. Но возможно ли посчитать их? Оказалось, что да.

Тут стоит сделать небольшое отступление и разобраться, в чем разница между ними. Так под атомами мы будем понимать минимальные частицы химических элементов, а под молекулами соединения двух и более атомов. Так, например, мельчайшая частица углерода — это, непосредственно, сам атом углерода С, а мельчайшая частица воды, исходя из формулы H2O, это два атома водорода и один атом кислорода.

Читайте также:  Как называется колебание стенок сосудов

Моль, количество вещества и число Авогадро

В далеком 1811 году итальянский ученый из Турина Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди (Не пугайтесь, это все один человек) высказал одну интересную гипотезу. По его словам газы при одинаковом давлении, объеме и температуре должны содержать одинаковое количество молекул. И, хотя эта гипотеза не нашла понимания и поддержки в научных кругах того времени, спустя полвека все же была принята как следствие кинетической теории газов. Она получила название закон Авогадро.

Современная трактовка этого закона звучит следующим образом: 1 моль любого газа при одинаковых давлении и температуре займет один и тот же объем. При нормальных условиях, когда температура равна 0оС, а давление 1 атм (105Па), газ займет так называемый молярный объем, равный 22,41383 л .

Стоп! А где же здесь говорится о количестве молекул, спросите вы? Все очень просто. Так как число молекул очень велико, и это сильно мешает практическим расчетам, была введена новая физическая величина, называемая количеством вещества (ν). Единицей измерения этой величины стал моль. Не путать с молью, что живет в шифоньерах и питается шубами.

Моль — это такое количество вещества, в котором содержится столько же атомов (или молекул), сколько атомов содержится в 12 граммах углерода.

А их там аж 6.02 *1023 штук. Это число называется числом Авогадро (NА). А значит, если мы имеем дело с газом в объеме 22,41383 литров, мы можем смело сказать, что число молекул этого газа будет равно числу Авогадро. Если условия, конечно, нормальные. То есть давление будет равно 105 Па, а температура 0 оС.

Глядя на это, вспоминается школа, в которой я учился. Там была вечная проблема с отоплением. А ведь условия то были нормальные!!! По крайней мере, с точки зрения физики.

Число Авогадро (NА=6.02 *1023 Моль-1) — количество атомов или молекул в одном моле вещества.

Зная количество вещества в молях и число Авогадро очень легко посчитать, сколько молекул содержится в этом веществе. Достаточно просто умножить число Авогадро на количество вещества.

N=NA*ν

И если вы пришли в поликлинику сдавать анализы, ну, скажем, кровь на сахар, зная число Авогадро, вы легко сможете посчитать количество молекул сахара в вашей крови. Ну, к примеру, анализ показал 5 моль. Умножим этот результат на число Авогадро и получим 3 010 000 000 000 000 000 000 000 штук. Глядя на эту цифру становится понятно, почему отказались мерить молекулы штуками, и стали мерить молями.

Молярная масса (M).

Если же количество вещества неизвестно, то его можно найти, разделив массу вещества на его молярную массу.

ν=m/M.

А дальше по уже известной формуле можно найти количество молекул. N=NA*ν В общем виде можно выразить как:

N=NA* m/M.

Единственный вопрос, который может тут возникнуть: «что же такое молярная масса?» Нет, это не масса маляра, как может показаться!!! Молярная масса — это масса одного моля вещества. Тут все просто, если в одном моле содержится NA частиц (т.е. равное числу Авогадро), то, умножая массу одной такой частицы m0 на число Авогадро, мы получим молярную массу.

M=m0*NA.

Молярная масса — это масса одного моля вещества.

И хорошо если она известна, а если нет? Придется вычислять массу одной молекулы m0. Но и это не проблема. Необходимо знать только её химическую формулу и иметь под рукой таблицу Менделеева.

Относительная молекулярная масса (Mr).

Если количество молекул в веществе величина очень большая, то масса одной молекулы m0 напротив, величина очень маленькая. Поэтому для удобства расчетов была введена относительная молекулярная масса (Mr).

Это отношение массы одной молекулы или атома вещества, к 1/12 массы атома углерода. Но пусть это вас не пугает, для атомов её указывают в таблице Менделеева, а для молекул она рассчитывается как сумма относительных молекулярных масс всех атомов, входящих в молекулу. Относительная молекулярная масса измеряется в атомных единицах масс (а.е.м), в пересчете на килограммы 1 а.е.м.=1,67• 10-27 кг.

Зная это, мы можем легко определить массу одной молекулы, умножив относительную молекулярную массу на 1,67• 10-27.

m0= Mr*1,67*10-27.

Относительная молекулярная масса — отношение массы одной молекулы или атома вещества, к 1/12 массы атома углерода.

Связь между молярной и молекулярной массами.

Вспомним формулу для нахождения молярной массы:

M=m0*NA.

Так как m0= Mr* 1,67• 10-27, мы можем выразить молярную массу как:

M=Mr*NA*1,67•10-27.

Теперь если умножить число Авогадро NA на 1,67• 10-27, мы получим 10-3, то есть чтобы узнать молярную массу вещества, достаточно только умножить его молекулярную массу на 10-3.

M=Mr*10-3

Но не спешите все это делать вычисляя количество молекул. Если нам известна масса вещества m, то разделив её на массу молекулы m0, мы получим количество молекул в этом веществе.

Читайте также:  Причина мигрени слабые сосуды

N=m / m0

Конечно неблагодарное это дело молекулы считать, мало того, что они маленькие, так еще и движутся постоянно. Того и гляди собьешься, и придется считать заново. Но в науке, как в армии — есть такое слово «надо», и поэтому даже атомы и молекулы были посчитаны…

Источник

29 декабря 2011

Автор
КакПросто!

Количество молекул в веществе измерить обычными методами практически невозможно. Это связанно с тем, что молекула вещества слишком мала для того, чтобы ее увидеть. Поэтому количество молекул в данной массе вещества рассчитывается с помощью специальных формул.

Вам понадобится

  • – периодическая таблица химических элементов;
  • – весы;
  • – калькулятор.

Инструкция

Зная такую величину, как количество вещества ν, найдите число молекул в нем. Для этого количество вещества, измеренное в молях, умножьте на постоянную Авогадро (NА=6,022∙10^23 1/моль), которая равна числу молекул в 1 моле вещества N=ν/ NА. Например, если имеется 1,2 моль поваренной соли, то в ней содержится N=1,2∙6,022∙10^23 ≈7,2∙10^23 молекул.

Если известна химическая формула вещества, с помощью периодической таблицы элементов найдите его молярную массу. Для этого по таблице найдите относительные атомные массы атомов, из которых состоит молекула, и сложите их. В результате получите относительную молекулярную массу вещества, которая численно равна его молярной массе в граммах на моль. Затем, на весах измерьте массу исследуемого вещества в граммах. Чтобы найти количество молекул в веществе, умножьте массу вещества m на постоянную Авогадро (NА=6,022∙10^23 1/моль) и поделите результат на молярную массу M (N=m∙ NА/M).

Пример Определите количество молекул, которое содержится в 147 г серной кислоты. Найдите молярную массу серной кислоты. Ее молекула состоит из 2-х атомов водорода одного атома серы и 4-х атомов кислорода. Их атомные массы равны 1, 32 и 16. Относительная молекулярная масса равна 2∙1+32+4∙16=98. Она равна молярной массе, поэтому М=98 г/моль. Тогда количество молекул, содержащихся в 147 г серной кислоты, будет равно N=147∙6,022∙10^23/98≈9∙10^23 молекул.

Чтобы найти количество молекул газа в нормальных условиях при температуре 0ºС и давлении 760 мм рт. столба, найдите его объем. Для этого измеряйте или высчитайте объем емкости V, в которой он находится в литрах. Чтобы найти количество молекул газа поделите этот объем на 22,4 л (объем одного моля газа в нормальных условиях), и умножьте на число Авогадро (NА=6,022∙10^23 1/моль) N= V∙ NА/22,4.

Источники:

  • как определить количество молекул

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google
Privacy Policy and
Terms of Service apply.

Источник

Тема. Решение задач по теме «Скорости газовых молекул. Распределение молекул по скоростям »

Цели

На примерах решения задач познакомить учащихся с основными типами задач и методами их решения.

Ход занятия

Вспомните основные свойства модели идеального газа. Повторите понятие размера молекул и длины свободного пробега. Выведите формулу для длины свободного пробега. Покажите, что длина свободного пробега зависит от давления, под которым находится газ. Подсчитайте число молекул, находящихся в единице объема при нормальных условиях. Обсудите насколько велико это число.

Качественные вопросы

1.       Какие гипотезы положены в основу вывода основного уравнения молекулярно-кинетической теории газа?

2.       Как правильно сформулировать вопрос о распределении молекул по скоростям?

3.       Какой физический смысл имеет функция распределения молекул по скоростям?

4.       Чему равна ограниченная кривой распределения молекул по скоростям площадь?

5.       Как изменяются с температурой положение максимума кривой функции распределения молекул по скоростям и его высота?

Примеры решения задач

Задача 1.Найти среднюю длину свободного пробега молекул воздуха при нормальных условиях. Эффективный диаметр молекул принять равным м.

Решение

Средняя длина свободного пробега определяется формулой , где r – радиус молекулы.  Так как  d = 2r, то , где  – число молекул в единице объема, Р – давление и Т – температура. Подставляя значение  в формулу для длины свободного пробега, получим

м.

Ответ:  м.

Задача 2. Найти среднюю длину свободного пробега атомов гелия в условиях, когда плотность гелия ρ = 2,1·10–2 кг/м3, а эффективный диаметр атома гелия  d = 1,9·10–2 м.

Решение

Для определения средней длины свободного пробега необходимо знать концентрацию молекул n при данных условиях. Найдем n0. Из уравнения Клапейрона–Менделеева   следует, что

.

Следовательно,

.

И для средней длины свободного пробега l получаем расчетную формулу

м.

Ответ: м.

Задача 3. Какое предельное число молекул азота может находиться в сферическом сосуде диаметром D = 1 см, чтобы молекулы не сталкивались друг с другом? Диаметр молекул азота  d = 3,1·10–10 м.

Решение

Для того чтобы столкновений молекул друг с другом не было, необходимо чтобы средняя длина свободного пробега λ была не меньше диаметра сосуда D, то есть λ ≥ D.  Известно, что

,

где d – эффективный диаметр молекул азота, n – число молекул в единице объема, то есть концентрация молекул. Зная d, можно найти допустимую концентрацию молекул.

Читайте также:  Атеросклеротическое поражение сосудов нижних конечностей это

.

Максимальное число молекул в сосуде, объем которого , определится следующим образом

.

Ответ: .

Задача 4. Азот  находится под давлением Па при температуре Т = 300 К. Найти относительное число молекул азота, скорости которых лежат в интервале скоростей, отличающихся от наиболее вероятной на Δv = 1 м/с.

Решение

Так как интервал скоростей Δv мал, то изменением функции распределения в этом интервале скоростей можно пренебречь, считая ее приближенно постоянной.

.

Подставляем значение наиболее вероятной скорости

;

.

Это и есть решение задачи. Производим вычисления: масса молекулы азота кг, постоянная Больцмана  Дж/К. Подставляя численные значения, получим

.

При подсчете необходимо учесть, что определяется относительное число молекул, отличающихся по скорости от наиболее вероятной в обе стороны, то есть интервал равен Δv = 2 м/с.

Ответ: .

Задача 5. Найти температуру газообразного азота, при которой скоростям молекул v1 = 300 м/с и  v2 = 600 м/с соответствуют одинаковые значения функции распределения Максвелла молекул по скоростям.

Решение

Запишем функцию распределения для указанных скоростей. По условию задачи значения функции должны быть одинаковы.

;

;

;

;

.

Масса молекулы азота   кг.

Постоянная Больцмана   Дж/К.

 К.

Ответ: = 300 К.

Задача 6. Найти отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах.

Решение

Воспользуемся формулой для определения средней квадратичной скорости

,

где  – молярная масса газа. Тогда отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах будет равно

,

где- молярная масса неона, – молярная масса гелия. Подставляя численные значения, получим

Ответ: .

Задача 7. Определить: 1) число молекул в 1 мм3 воды, 2) массу молекулы воды, 3) диаметр молекулы воды, считая условно, что молекулы воды шарообразны и соприкасаются.

Решение

Число  молекул, содержащихся в массе вещества  равно числу Авогадро , умноженному на число молей  (- молярная масса вещества)

,

где r – плотность, V – объем вещества. После подстановки числовых значений получим

.

Массу m1 одной молекулы можно определить, разделив массу одного моля на число Авогадро:

 кг.

Считая, что молекулы соприкасаются, объем, занимаемый одной молекулой , где d – диаметр молекулы. Отсюда . Так как  , где  – объем одного моля, то

м.

Ответ: ;  кг;  м.

Задача 8. Зная, что диаметр молекулы кислорода  d = 3·10–10 м  подсчитать, какой длины S получилась бы цепочка из молекул кислорода, находящихся в объеме  V = 2 см2  при давлении Р = 1,01·105 Н/м2  и температуре  Т = 300 К, если эти молекулы расположить вплотную в один ряд. Сравнить длину этой цепочки со средним расстоянием от Земли до Луны м.

Решение

Число молекул кислорода, содержащихся в единице объема, согласно основному уравнению молекулярно-кинетической теории, равно

,

Число молекул в объеме V будет равно  . Следовательно, м.

Тогда .

Ответ: м;  раз.

Задача 9. Средняя квадратичная скорость молекул некоторого газа  vc.к. = 450 м/с. Давление газа  р = 7 · 104 Н/м2. Найти плотность газа ρ  при этих условиях.

Решение

Из уравнения Клайперона–Менделеева  следует: .   Учитывая, что , получаем  .

Ответ: .

Задания для самостоятельной работы

1. В опыте Штерна источник атомов серебра создает пучок, который падает на внутреннюю поверхность неподвижного цилиндра радиуса R = 30 см и образует на ней пятно. Цилиндр начинает вращаться с угловой скоростью ω = 100 рад/с. Определить скорость атомов серебра, если пятно отклонилось на угол φ = 0,314 рад  от первоначального положения.

Ответ: м/с.

2. Сколько молекул газа содержится в баллоне емкостью V = 60 л при температуре Т = 300 К и давлении P= 5·103 Н/м2?

Ответ:  .

3. Определить температуру газа, для которой средняя квадратичная скорость молекул водорода больше их наиболее вероятной скорости на Δv = 400 м/с. Масса молекулы водорода т = 3,35·10–27 кг.

Ответ: = 380 К.

4. Вычислить среднее расстояние между центрами молекул идеального газа при нормальных условиях.

Ответ:  м.

5. В помещении площадью S = 100 м2 и высотой  h = 4 м  разлито V1 = 1 л ацетона (СН3)2СО. Сколько молекул ацетона содержится в 1 м3 воздуха, если весь ацетон испарился? Плотность r  ацетона 792 кг/м3.

Ответ:  

6. Найти число столкновений z, которые произойдут за 1 с в 1 см3 кислорода при нормальных условиях. Эффективный радиус молекулы кислорода принять равным
1,5·10–10 м.

Ответ: .

7. Найти среднюю длину свободного пробега молекул азота при давлении P = 133 Па и температуре t = 27°C.

Ответ: м.

8. Доказать, что средняя арифметическая и средняя квадратичная скорости молекул газа пропорциональны , где P – давление газа; ρ – плотность газа.

Ответ: .

9. Два одинаковых сосуда, содержащие одинаковое число молекул кислорода, соединены краном. В первом сосуде средняя квадратичная скорость молекул равна  , во втором – . Какой будет эта скорость, если открыть кран, соединяющий сосуды (теплообмен с окружающей средой отсутствует)?

Ответ: .


Рекомендуемая литература

1.      Бутиков Е.И., Кондратьев А.С. Физика. Т.3. Строение и свойства вещества – Москва – Санкт-Петербург. Физматлит. Невский диалект. Лаборатория Базовых Знаний, 2001. С. 170-194.

2.      Белолипецкий С.Н., Еркович О.С., Казаковцева В.А., Цвецинская Т.С. Задачник по физике – Москва. Физматлит, 2005.

3.      Готовцев В.В. Лучшие задачи по механике и термодинамике. Москва-Ростов-на-Дону, Издательский центр «Март», 2004. С. 215-219.

Источник