Как найти объем масла в сосуде
В
заданиях ЕГЭ по математике встречаются задачи, в которых речь идёт о
погружении детали в жидкость или о переливании жидкости из одного сосуда
в другой.
Вопросы
в условии связаны с нахождением объёма погружаемого в жидкость тела или
с нахождением какого-либо параметра сосуда. Форма сосуда может быть
различной: цилиндр, призма.
Что необходимо понимать?
Если
жидкость залита в цилиндрический сосуд, то она принимает форму
цилиндра. Если она залита в имеющий форму призмы, то соответственно
принимает форму призмы. Это означает, что формулы для объёмов цилиндра и
призмы работают и для объёмов жидкостей помещённых в такие сосуды.
Формула объёма (цилиндра и призмы):
Если
жидкость перливается в аналогичный сосуд с меньшим основанием, уровень
(высота) жидкости увеличивается; если в сосуд с большим основанием, то
уровень жидкости уменьшается.
Рекомендации!
В
задачах на погружение детали в жидкость следует найти объём полученный
после её погружения, далее найти разность объёмов до и после (если
данные в условии это позволяют). Можно такие задачи решать и другим
способом, используя закон Архимеда. Примеры рассмотрены ниже.
В
задачах, где идёт речь о переливании жидкости в другой сосуд (с
уменьшенной или увеличенной площадью основания) помните о том, что сам
объём жидкости остаётся неизменным. Вы можете выразить его через площадь
основания и высоту (S1 и H1) одного сосуда и площадь основания и высоту (S2 и H2) другого сосуда, далее полученные выражения приравнять.
При
дальнейших преобразованиях получите отношение соответствующих величин –
либо площадей оснований, их рёбер, либо высот. Пример такой задачи
рассмотрен ниже в статье.
В цилиндрический сосуд налили 5000 см3
воды. Уровень жидкости оказался равным 40 см. В воду полностью
погрузили деталь. При этом уровень жидкости в сосуде поднялся на 15 см.
Чему равен объем детали? Ответ выразите в см3.
Мы знаем, что объём цилиндра равна произведению площади основания на высоту:
В
жидкость погружаем деталь. Её уровень поднимается. Для того, чтобы
вычислить объём детали необходимо из полученного объёма (полученного
после погружения детали) вычесть объём жидкости, который был изначально.
Высота это есть уровень жидкости.
Итак, из имеющихся данных можем найти площадь основания:
Основание
цилиндра у нас величина неизменная, но изменилась высота жидкости (при
погружении детали) на 15 сантиметров, то есть она стала
40 +15 = 55 см.
Найдём полученный объём:
Теперь можем вычислить объём детали: 6875 – 5000 = 1875 см3
Можно решать подобные задачи более рациональным способом.
По закону Архимеда объем детали равен объему вытесненной ею жидкости. Объем вытесненной жидкости равен 15/45 исходного объема:
Ответ: 1875
Решить самостоятельно:
Посмотреть решение
В сосуд, имеющий форму правильной треугольной призмы, налили 2500 см3 воды
и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде
поднялся с отметки 20 см до отметки 24 см. Чему равен объем детали?
Ответ выразите в см3.
Принцип решения тот же самый, что и в предыдущей задаче.
Мы знаем, что объём призмы равен произведению площади основания на высоту:
В
жидкость погружаем деталь. Её уровень поднимается. Для того, чтобы
вычислить объём детали необходимо из полученного объёма (полученного
после погружения детали) вычесть объём жидкости, который был изначально.
Из имеющихся данных можем найти площадь основания призмы:
Основание призмы не изменилось, но изменилась высота жидкости (при погружении детали) она стала 24см.
Найдём полученный объём:
Теперь можем вычислить объём детали: 3000 – 2500 = 500 см3
Второй способ:
По закону Архимеда объем детали равен объему вытесненной ею жидкости. Объем вытесненной жидкости равен 4/20 исходного объема:
Ответ: 500
Решить самостоятельно:
Посмотреть решение
В
сосуд, имеющий форму правильной треугольной призмы, налили воду.
Уровень воды достигает 250 см. На какой высоте будет находиться уровень
воды, если ее перелить в другой такой же сосуд, у которого сторона
основания в 5 раз больше, чем у первого? Ответ выразите в см.
В
подобных задачах с переливаниями жидкости следует помнить, что объём её
остаётся прежним (он не изменен – куда бы её не перелили).
Объем
жидкости в данном случае это объём правильной треугольной призмы (в
её основании лежит правильный треугольник). Он равен произведению
площади основания призмы на высоту:
Суть
дальнейших действий сводится к тому, что мы можем выразить объёмы
жидкостей в двух призмах: первой и второй (основание которой в 4 раза
больше), а затем приравнять полученные выражения, в итоге после
преобразований получим отношение двух высот.
Естественно, что высота жидкости уменьшится, если увеличить площадь основания.
Обозначим исходную высоту жидкости Н1, полученную после переливания Н2.
Найдём площадь основания призмы, обозначив его сторону как а. Площадь правильного треугольника равна:
Таким образом, объём залитой жидкости в первую призму равен:
Площадь основания второй призмы равна:
Объём залитой жидкости во вторую призму равен:
Найдём отношение высот:
Таким образом, при том же объёме жидкости её высота уменьшится в 25 раз и будет равна 10.
Или можно сказать так:
При увеличении стороны основания а в 5 раз уровень воды уменьшится в 25 раз.
Ответ: 10
Решить самостоятельно:
Посмотреть решение
В
цилиндрический сосуд, в котором находится 14 литров воды, опущена
деталь. При этом уровень жидкости в сосуде поднялся в 1,1 раза. Чему
равен объем детали? Ответ выразите в литрах.
Объём цилиндра равна произведению площади его основания на высоту:
Жидкость в сосуде имеет цилиндрическую объёмную форму.
Уровень
жидкости поднялся в 1,1 раза – означает, что высота цилиндра
увеличилась в 1,1 раза. Исходя из формулы объёма цилиндра понятно, что
при увеличении высоты в 1,1 раза влечёт за собой увеличение объёма также
в 1,1 раза (так как зависимость величин прямопропорциональная).
Это означает, что после погружения детали объём будет равен 14∙1,1 = 15,4 литра.
Таким образом, объём детали будет равен: 15,4 – 14 = 1.4 литра.
Ответ: 1,4
Решить самостоятельно:
Посмотреть решение
Если ход решения сразу не увидели, ставьте вопрос – что можно найти исходя из условия?
Например,
если дан начальный объём и высота жидкости (в сосуде формы призмы или
цилиндра), то мы можем найти площадь основания. Затем, зная площадь
основания и высоту жидкости после погружения детали мы можем найти
полученный объём.
Далее
найти разницу между объёмами не составит труда (это относится к первым
двум задачам). В последней задаче для решения требуется немного
логики.
Источник
Понятие объёма
Можно провести аналогию понятия объема сосуда с понятием площади. Напомним, что понятие площади применимо к плоскости. Любой многоугольник имеет свою площадь.
В качестве единицы измерения площади принято брать квадрат со стороной, равной единице. В случае объёма за единицу измерения берут куб с ребром, равным единице. Этот куб называют кубическим сантиметром (метром, миллиметром и т. д.) и обозначают $1 см^3$ (соответственно, $1 м^3, 1 мм^3$ и т.п.).
Другую аналогию между площадью и объёмом можно провести в самой процедуре их измерения. Объём выражается положительным числом, показывающим количество единиц измерения объёмов и частей, которые укладываются в данном теле. Число единиц объёма тела зависит от выбранной единицы измерения, то есть меняется в зависимости от того, выбраны $cм^3, м^3$ и т.п. Единицу измерения традиционно указывают после числа.
Приведём простейший пример. $V=3 мм^3$ – эта запись означает, что объём некоторого сосуда равен 3-м, если в качестве единицы измерения взят кубический миллиметр.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Основные свойства объёмов:
- У равных сосудов равные объёмы.
- В случае, когда сосуд состоит из нескольких сосудов, то его объём равен сумме всех этих сосудов.
Эти свойства аналогичны свойствам длин отрезков и площадей многоугольников.
Часто требуется найти объём параллелепипеда, пирамиды, цилиндра, конуса и шара. Параллельно с формулами объёма дадим ключевые определения. Чтобы рассмотреть такую фигуру как параллелепипед, необходимо дать два важных определения:
- Многогранник – это тело, ограниченное несколькими многоугольниками (гранями). Стороны граней называют рёбрами, а концы рёбер – вершинами.
- Призма – это многогранник, который составлен из двух параллельных многоугольников (оснований призмы), вершины которых соединены параллельными и равными друг другу отрезками (боковыми ребрами призмы), образующими параллелограммы (боковые грани призмы).
Нахождение объёма параллелепипеда
Параллелепипед – это многогранник, составленный из 6-ти прямоугольников. Или это четырёхугольная призма, в которой основания – параллелограммы. Форму параллелепипеда имеют коробки, комнаты и многие другие предметы из нашей повседневной жизни.
В случае, когда у параллелепипеда боковые ребра перпендикулярны к плоскостям оснований, а боковые грани и основания – прямоугольники, то этот параллелепипед называют прямоугольным (прямым).
Для нахождения объёма прямоугольного параллелепипеда необходимы его измерения. Измерения параллелепипеда – это длины трёх рёбер с общей вершиной. В речи мы называем измерениями “длину”, “ширину” и “высоту” (например, при измерении комнаты).
Определение 1
Объём прямоугольного параллелепипеда равен произведению трёх его измерений: $V=abc$.
Если площадь основания $S=ac$, а высота $h=b$, то формула объёма может быть следующей: $V=Sh$.
Нахождение объёма пирамиды
Пирамида – это многогранник, образованный из $n$-угольника (в качестве основания) и треугольников (в качестве боковых граней), построенных путем соединения одной точки (вершины пирамиды) отрезками (боковыми рёбрами) с вершинами многоугольника.
Рисунок 1. Пирамида. Автор24 — интернет-биржа студенческих работ
Определение 2
Объём пирамиды равен одной трети произведения площади основания на высоту. В данном случае высота представляет собой перпендикулярный к плоскости основания отрезок, который соединяет вершину пирамиды с плоскостью её основания.
$V=frac{Sh}{3}$.
Нахождение объёма цилиндра
Цилиндр – некоторое тело (или сосуд), полученное в результате вращения некоторого прямоугольника вокруг своей оси (одной из сторон прямоугольника).
Рисунок 2. Цилиндр. Автор24 — интернет-биржа студенческих работ
Определение 3
Объём цилиндра равен произведению площади основания на высоту: $V=Sh$.
Нахождение объёма конуса
Конус – это некоторое тело (сосуд), полученное в результате вращения прямоугольного треугольника вокруг его катета.
Рисунок 3. Конус. Автор24 — интернет-биржа студенческих работ
Определение 4
Объём конуса равен одной трети произведения площади основания на высоту: $V=frac{Sh}{3}$.
Нахождение объёма шара
Сфера – это поверхность, состоящая из всех точек пространства, расположенных на равном расстоянии (радиусе) от данной точки (центра).
Рисунок 4. Сфера. Автор24 — интернет-биржа студенческих работ
Шар – это некоторое тело (сосуд), которое ограничено сферой. Другой вариант определения: шар – это тело (сосуд), полученное в результате вращения полукруга вокруг диаметра этого полукруга.
Рисунок 5. Шар. Автор24 — интернет-биржа студенческих работ
Определение 5
Объём шара: $V=frac{4}{3}pi R^3$, где $R$ – радиус шара.
Таким образом, мы перечислили все основные формулы объёма основных фигур в стереометрии.
Источник
Муниципальное бюджетное общеобразовательное учреждение
«Первомайская средняя общеобразовательная школа»
I муниципальная научно-практическая конференция
учащихся начальных и средних классов
«Я познаю мир»
Естественно-научное направление (физика)
Определение размеров молекулы растительного масла
Автор:
Хоботкова Яна Олеговна,
8 класс
Руководитель:
Рощупкина Людмила Анатольевна,
учитель физики
село Первомайское, 2012
Оглавление
- Введение ………………………………………………………………………………………3
- Глава I. Что такое молекула?……………………………………………………………………4
Глава II. Методы определения размеров молекул ….……………………………………5
Глава III. Определение диаметра молекулы растительного масла ……………………7
- Заключение ………………………………………………………………………………….8
- Список использованной литературы ………………………………………………………..9
Введение
Все тела, которые нас окружают, состоят из мельчайших частиц – молекул. Очень интересно узнать, каковы размеры молекул? Как их можно определить? Из-за очень малых размеров молекулы нельзя увидеть невооруженным глазом или с помощью обыкновенного микроскопа. Их можно увидеть только с помощью электронного микроскопа. Ученые доказали, что молекулы разных веществ отличаются друг от друга, а молекулы одного и того же вещества одинаковы. На практике измерить диаметр молекулы можно, но к сожалению, в школьной программе не предусмотрено изучение проблем такого рода.
Цель исследования: определить диаметр молекулы растительного масла.
Объект исследования: молекула растительного масла
Предмет исследования: диаметр молекулы.
Гипотеза: известно, из разных источников, что диаметр молекулы растительного масла может принять значение от 10-7 до 10-10м.
Задачи исследования:
- Изучение методов определения размеров молекул.
- Проведение эксперимента по определению размеров молекул.
- Анализ полученных результатов.
- Сравнение диаметра молекул растительного масла полученных экспериментальным методом и статистическими данными.
Актуальность: работа относится к прикладным исследованиям и поможет лучше разобраться в вопросе определение размеров молекул.
Глава I. Что такое молекула?
Молекула в современном понимании – это наименьшая частица вещества, обладающая всеми его химическими свойствами. Молекула способна к самостоятельному существованию.
Различными способами было определено, что в 1 см3 любого газа при нормальных условиях содержится около 2,7×1019 молекул.
Чтобы понять, насколько велико это число, можно представить, что молекула – это «кирпич». Тогда если взять количество кирпичей, равное числу молекул в 1 см3 газа при нормальных условиях, и плотно уложить ими поверхность суши всего земного шара, то они покрыли бы поверхность слоем высотой 120 м, что почти в 4 раза превосходит высоту 10-этажного дома. Огромное число молекул в единице объёма указывает на очень малые размеры самих молекул. Например, масса молекулы воды m=29,9×10-27 кг. Соответственно малы и размеры молекул. Диаметром молекулы принято считать минимальное расстояние, на которое им позволяет сблизиться силы отталкивания. Однако понятие размера молекулы является условным, так как на молекулярных расстояниях представления классической физики не всегда оправданы. Средний размер молекул порядка 10-10м.
Если бы размер молекулы увеличить до размера точки в конце предложения в книге, то толщина человеческого волоса стала бы равна 40 м, а человек, стоя на поверхности Земли, упирался бы головою в Луну! Если из детского резинового шарика, надутого и наполненного водородом (массой 3г), каждую секунду выпускать по 1 миллиону молекул, то понадобится 30 миллиардов лет!
Молекула – это мельчайшая частица вещества, обладающая свойствами этого вещества. Так, молекула сахара – сладкая, а соли – соленая. Молекулы состоят из атомов. Размеры молекул ничтожно малы.
Как добыть молекулу из вещества? – механическим дроблением вещества. Каждому веществу соответствует определенный вид молекул. У разных веществ молекулы могут состоять из одного атома (инертные газы) или из нескольких одинаковых или различных атомов, или даже из сотен тысяч атомов (полимеры). Молекулы различных веществ могут иметь форму треугольника, пирамиды и других геометрических фигур, а также быть линейными.
Молекулы одного и того же вещества во всех агрегатных состояниях одинаковы.
Между молекулами в веществе существуют промежутки. Доказательствами существования промежутков служат изменение объема вещества, то есть расширение и сжатие вещества при изменении температуры, и явление диффузии. Молекулы вещества находятся в непрерывном тепловом движении.
Если удалить пространство из всех атомов человеческого тела, то все, что останется, сможет пролезть через игольное ушко.
Глава II. Методы определения размеров молекул
В молекулярной физике главные «действующие лица» — это молекулы, невообразимо маленькие частицы, из которых состоят все на свете вещества. Ясно, что для изучения многих явлений важно знать, каковы они, молекулы. В частности, каковы их размеры.
Когда говорят о молекулах, их обычно считают маленькими упругими твердыми шариками. Следовательно, знать размер молекул, значит знать их радиус или диаметр.
Несмотря на малость молекулярных размеров, физики сумели разработать множество способов их определения. В одном используется свойство некоторых (очень немногих) жидкостей растекаться в виде пленки толщиной в одну молекулу. В другом, размер частицы определяется с помощью сложного прибора – ионного проектора.
Строение молекул изучают различными экспериментальными методами. Электронография, нейтронография и рентгеновский структурный анализ позволяют получать непосредственную информацию о структуре молекул. Электронографии, метод, исследующий рассеяние электронов на пучке молекул в газовой фазе, позволяет рассчитать параметры геометрической конфигурации для изолированных сравнительно простых молекул. Нейтронография и рентгеновский структурный анализ ограничены анализом структуры молекул либо отдельных упорядоченных фрагментов в конденсированной фазе. Рентгенографические исследования кроме указанных сведений дают возможность получить количественные данные о пространственном распределении электронной плотности в молекулах.
Спектроскопические методы основаны на индивидуальности спектров химических соединений, которая обусловлена характерным для каждой молекулы набором состояний и отвечающих им энергетических уровней. Эти методы позволяют проводить качественный и количественный спектральный анализ веществ.
Разнообразную информацию о строении и свойствах молекул дает изучение их поведения во внешних электрических и магнитных полях.
Существуют, однако, очень простые способы определения размеров молекул:
1 способ. Основан на том, что молекулы вещества, когда оно находится в твердом или жидком состоянии, можно считать плотно прилегающими друг к другу. В таком случае для грубой оценки можно считать, что объем V некоторой массы m вещества просто равен сумме объемов содержащихся в нем молекул. Тогда объем одной молекулы мы получим, разделив объем V на число молекул N.
Число молекул в теле массой m равно, как известно, , где М — молярная масса вещества NA — число Авогадро. Отсюда объем V0 одной молекулы определяется из равенства
В это выражение входит отношение объема вещества к его массе. Обратное же отношение есть плотность вещества, так что .
Плотность практически любого вещества можно найти в доступных всем таблицах. Молярную массу легко определить, если известна химическая формула вещества.
Объем одной молекулы, если считать ее шариком, равен , где r – радиус шарика. Поэтому , откуда мы и получаем выражение для радиуса молекулы:
.
Первый из этих двух корней — постоянная величина, равная ≈ 7,4 · 10-9 моль1/3, поэтому формула для r принимает вид .
Например, радиус молекулы воды, вычисленный по этой формуле, равен rВ ≈ 1,9 · 10-10 м.
Описанный способ определения радиусов молекул не может быть точным уже потому, что шарики нельзя уложить так, чтобы между ними не было промежутков, даже если они соприкасаются друг с другом. Кроме того, при такой «упаковке» молекул – шариков были бы невозможны молекулярные движения. Тем не менее, вычисления размеров молекул по формуле, приведенной выше, дают результаты, почти совпадающие с результатами других методов, несравненно более точных.
2 способ. Метод Ленгмюра и Дево. В данном методе исследуемая жидкость должна растворяться в спирте (эфире) и быть легче воды, не растворяясь в ней. При попадании капли раствора на поверхность воды спирт растворяется в воде, а исследуемая жидкость образует пятно площадью S и толщиной d (порядка диаметра молекул).
Если допустить, что молекула имеет форму шара, то объем одной молекулы равен:
где d – молекулы.
Необходимо определить диаметр молекулы d. В микропипетку набрать 0,5 мл раствора и, расположив ее над сосудом, отсчитать число капель n, содержащихся в этом объеме. Проделав опыт несколько раз, найти среднее значение числа капель в объеме 0,5 мл, а затем подсчитать объём исследуемой жидкости в капле: , где n – число капель в объеме 0,5 мл, 1:400 – концентрация раствора.
В ванну налить воду толщиной 1 – 2 см. Насыпать тальк тонким слоем на лист бумаги, ударяя слегка пальцем по коробочке. Расположив лист бумаги выше и сбоку от ванны на расстоянии 10 – 20 см, тальк сдуть с бумаги. На поверхность воды в ванне из пипетки капнуть одну каплю раствора. Линейкой измерить, средний диаметр образовавшегося пятна D и подсчитываю его площадь. Опыт повторить 2- 3 раза, а затем подсчитать диаметр молекул d.
3 способ. Определение диаметра молекулы. Будем считать, что капля масла растекается по воде до тех пор, пока толщина масляной плёнки не станет равной одной молекуле, тогда диаметр одной молекулы можно определить по формуле: d=V/S, где V – объём капли масла, S – площадь масленого пятна. Объём капли масла можно определить следующим образом: накапать 100 капель из капилляра в сосуд и измерить массу масла в нём. После этого массу, выраженную в килограммах, поделить на плотность масла, которую можно взять из таблицы плотности некоторых веществ (плотность масла растительного 800 кг/м3). Затем полученный результат поделить на количество капель. Объём капли можно определить также с помощью мерного цилиндра: накапать масло в цилиндр, измерить его объём в см3 и перевести в м3, для чего поделить на 1000000, затем на количество капель масла. После того, как объём капли стал известен нужно капнуть одну каплю масла на поверхность воды, которая налита в широкий сосуд. Для ускорения реакции предварительно немного нужно нагреть воду – приблизительно до 400С. Масло начнёт растекаться, и в результате получится круглое пятно. После того, как пятно перестанет расширяться, с помощью линейки измерить его диаметр и рассчитать площадь пятна по формуле: .
Глава III. Определение диаметра молекулы растительного масла
После изучения способов определения размера молекулы растительного масла был выбран наиболее подходящий – третий способ, так как для первого необходимо найти молярную массу растительного масла, а для этого необходимо знать химическую формулу растительного масла. Второй способ также невыполним, так как в данном методе исследуемая жидкость должна растворяться в спирте (эфире) и быть легче воды, не растворяясь в ней. Такой жидкостью может быть олеиновая кислота, которую сложно приготовить в школьной лаборатории.
Для проведения эксперимента был определён перечень лабораторного оборудования: пипетка, ванна размером 40×30 см, растительное масло, перманганат кальция, линейка измерительная, тальк (измельчённый мел), измерительный цилиндр (мензурка), термометр, электрический чайник.
Цель работы: определить диаметр молекулы растительного масла.
Ход эксперимента:
- Определение объёма капли растительного масла.
В мерный цилиндр (мензурку) накапали 190 капель, общий объём которых составил 10 мл. Использую формулу для определения объём исследуемой жидкости в капле из метода Ленгмюра и Дево (2 способ), получаем .
- Определение площади масляного пятна.
Для того, чтобы получить масляное пятно провели несколько экспериментов.
В ванну размером 40×30 см необходимо налить воду и капнуть 1 каплю растительного масла, а затем наблюдать, как расплывается пятно, когда оно перестанет расплываться – измерить его диаметр.
№ | Условия проведения эксперимента | Что увидели | Диаметр пятна (D, см) |
1 | В ванну налили холодную воду | Капля масла не растекается, её плохо видно. | Не определено |
2 | Воду нагрели до 400С и на поверхность насыпали тальк (измельчённый мел) | Капля масла растекается, но её плохо видно. | Не определено |
3 | Воду нагрели до 400С и добавили перманганат калия. | Капля масла растекается, пятно хорошо видно | 6 |
Для определения площади пятна использовали формулу: .
Получаем: .
- Определение диаметра молекулы растительного масла.
Используем формулу: , получаем .
Вывод: при расчёте диаметра молекулы растительного масла я получила значение , которое соответствует табличным данным.
Заключение
В результате работы я изучила литературу о молекулах, о методах определения диаметра
молекул. Используя полученные знания, я провела исследования по определению приблизительного диаметра молекулы растительного масла и получила следующий результат: .
Данный результат подтвердил моё предположение (гипотезу), что диаметр молекулы растительного масла может принять значение от 10-7 до 10-10м.
Цель моей работы достигнута, но изучение темы «Молекулы» ещё не закончено. На этом небольшом исследовании останавливаться не буду, так как есть много вопросов, на которые хочется найти ответы не только в книжках, но и убедиться самому, выполняя эксперимент. Например, ответить на вопросы: двигаются ли молекулы? Каковы размеры молекулы воды и как определить?
Список использованной литературы
- Анциферов Л.И. Самодельные приборы для физического практикума в средней школе. М.: Просвещение, 1985.
- Блудов М.И. Беседы по физике. М.: Просвещение, 1984.
- Буров В.А. Практикум по физике в средней школе. М.: Просвещение, 1973.
- https://medencped.ru/molekula/
- https://www.hemi.nsu.ru/text113.htm
- https://potomy.ru/world/2288.html
- https://www.alsak.ru/content/view/326/122/1/1
- https://marklv.narod.ru/mkt/str2.htm
- https://class-fizika.narod.ru/7_stroenie.htm
Источник