Как найти площадь основания сосуда

Как найти площадь основания сосуда thumbnail

1. Площадь полной поверхности куба

Площадь поверхности куба

a – сторона куба

Формула площади поверхности куба,(S):

Формула площади полной поверхности куба

2. Найти площадь поверхности прямоугольного параллелепипеда

Найти площадь поверхности прямоугольного параллелепипеда

abc – стороны параллелепипеда

Формула площади поверхности параллелепипеда, (S):

Формула площади поверхности параллелепипеда

3. Найти площадь поверхности шара, сферы

Найти площадь поверхности шара

R – радиус сферы

π ≈ 3.14

Формула площади поверхности шара (S):

Формула площади поверхности сферы

4. Найти площадь боковой и полной поверхности цилиндра

расчет площади поверхности цилиндра

r – радиус основания

h – высота цилиндра

π ≈ 3.14

Формула площади боковой поверхности цилиндра, (Sбок):

Площадь боковой поверхности цилиндра

Формула площади всей поверхности цилиндра, (S):

Площадь всей поверхности цилиндра

5. Площадь поверхности прямого, кругового конуса

Площадь поверхности конуса

R – радиус основания конуса

H – высота

L – образующая конуса

π ≈ 3.14

Формула площади боковой поверхности конуса, через радиус (R) и образующую (L), (Sбок):

Формула площади боковой поверхности конуса

Формула площади боковой поверхности конуса, через радиус (R) и высоту (H), (Sбок):

Формула площади боковой поверхности конуса

Формула площади полной поверхности конуса, через радиус (R) и образующую (L), (S):

Формула площади полной поверхности конуса

Формула площади полной поверхности конуса, через радиус (R) и высоту (H), (S):

Формула площади полной поверхности конуса

6. Формулы площади поверхности усеченного конуса

площадь поверхности усеченного конуса

R – радиус нижнего основания

r – радиус верхнего основания

L – образующая усеченного конуса

π ≈ 3.14

Формула площади боковой поверхности усеченного конуса, (Sбок):

Формула площади боковой поверхности усеченного конуса

Формула площади полной поверхности усеченного конуса, (S):

Формула площади полной поверхности усеченного конуса

7. Площадь поверхности правильной пирамиды через апофему

Площадь поверхности правильной пирамиды

L – апофема (опущенный перпендикуляр OC из вершины С, на ребро основания АВ)

P – периметр основания

Sосн – площадь основания

Формула площади боковой поверхности правильной пирамиды (Sбок):

Формула площади боковой поверхности правильной пирамиды

Формула площади полной поверхности правильной пирамиды (S):

Формула площади полной поверхности правильной пирамиды

8. Площадь боковой поверхности правильной усеченной пирамиды

Площадь боковой поверхности правильной усеченной пирамиды

m – апофема пирамиды, отрезок OK

P – периметр нижнего основания, ABCDE

p – периметр верхнего основания, abcde

Формула площади боковой поверхности правильной усеченной пирамиды, (S):

Формула площади боковой поверхности правильной усеченной пирамиды

9. Площадь поверхности шарового сегмента

Площадь поверхности шарового сегмента

R – радиус самого шара

h – высота сегмента

π ≈ 3.14

Формула площади поверхности шарового сегмента, (S):

Формула площади поверхности шарового сегмента

10. Площадь поверхности шарового слоя

Площадь поверхности шарового слоя

h – высота шарового слоя, отрезок KN

R – радиус самого шара

O – центр шара

π ≈ 3.14

Формула площади боковой поверхности шарового слоя, (S):

Формула площади боковой поверхности шарового слоя

11. Площадь поверхности шарового сектора

Площадь поверхности шарового сектора

R – радиус шара

r – радиус основания конуса = радиус сегмента

π ≈ 3.14

Формула площади поверхности шарового сектора, (S):

Формула площади поверхности шарового сектора

Источник

Наглядная стереометрия

В 13 задании ЕГЭ базового уровня мы будем иметь дело с задачами по стереометрии, но не абстрактными, а наглядными примерами. Это могут быть задачи на уровень жидкости в сосудах, которую я разобрал ниже, или же задачи на модификации фигуры — например, у которой отрезали вершины. Нужно быть готовым к решению простых задач по стереометрии — они обычно сводятся сразу к задачам на плоскости, необходимо только правильно посмотреть на чертеж.

Разбор типовых вариантов заданий №13 ЕГЭ по математике базового уровня

Вариант 13МБ1

Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у данного? Ответ дайте в сантиметрах.

Алгоритм выполнения:
  1. Записать формулу объема цилиндра.
  2. Подставить значения для цилиндра с жидкостью в первом и во втором случае.
  3. Объем жидкости не изменялся, следовательно, можно приравнять объемы.
  4. Полученное уравнение решить относительно второй высоты h2.
  5. Подставить данные и вычислить искомую величину.
Решение:

Запишем формулу объема цилиндра.

Если вы забыли формулу объема цилиндра, то напомню, как ее можно легко вывести. Объем простых фигур, таких как куб и цилиндр, можно вычислить умножив площадь основания на высоту. Площадь основания в случае с цилиндром равна площади окружности, которую, вы, наверняка помните: π • r2.

Следовательно, объем цилиндра равен π • r2 • h

Подставим значения для цилиндра с жидкостью в первом и во втором случае. V1 = π r12 h1 V2 = π r22 h2 Объем жидкости не изменялся, следовательно, можно приравнять объемы.

V1 = V2

Левые части равны, значит можно приравнять и правые.

π r12 h1 = π r22 h2

Полученное уравнение решим относительно второй высоты h2.

h2 – неизвестный множитель. Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

h2 =( π r12 h1)/ π r22

По условию площадь основания стала в 4 раза больше, то есть r2 = 4 r1 . Подставим r2 = 4 r1 в выражение для h1. Получим: h2 =( π r12 h1)/ π (4 r1) 2 Полученную дробь сократим на π, получим h2 =( r12 h1)/ 16 r12 Полученную дробь сократим на r1, получим h2 = h1/ 16. Подставим известные данные: h2 = 80/ 16 = 5 см. Ответ: 5.

Вариант 13МБ2

Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?

Алгоритм выполнения:
  1. Записать формулу, для вычисления объема правильной четырехугольной призмы.
  2. Записать в общем виде формулу для нахождения объема в первом и втором случае.
  3. Найти отношение объемов.
  4. Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
  5. Сократить получившуюся дробь.
Решение:

Запишем формулу, для вычисления объема правильной четырехугольной призмы.

V = a · b · c

Запишем в общем виде формулу для нахождения объема в первом и втором случае.

V1 = a1 · b1 · c1

V2 = a2 · b2 · c2

Найдем отношение объемов.

V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2)

Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы. По условию c1 = 4,5 c2 (первая коробка в четыре с половиной раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой). Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1 Подставим эти выражения в формулу отношения объемов:

Читайте также:  Где можно обследовать сосуды москва

V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2) = (a1 · b1 · 4,5c2)/ ( 3a1 · 3b1 · c2) = (a1 · b1 · 4,5c2)/ ( 9a1 · b1 · c2)

Сократим получившуюся дробь на a1 · b1 · c2. Получим:

V1 / V2 = (a1 · b1 · 4,5c2)/ ( 9a1 · b1 · c2) = 4,5/9 = ½.

Объем первой коробочки в 2 раза меньше объема второй. Ответ: 2.

Вариант 13МБ3

Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в полтора раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?

Алгоритм выполнения:
  1. Записать формулу, для вычисления объема правильной четырехугольной призмы.
  2. Записать в общем виде формулу для нахождения объема в первом и втором случае.
  3. Найти отношение объемов.
  4. Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
  5. Сократить получившуюся дробь.
Решение:

Запишем формулу, для вычисления объема правильной четырехугольной призмы.

V = a · b · c

Запишем в общем виде формулу для нахождения объема в первом и втором случае.

V1 = a1 · b1 · c1

V2 = a2 · b2 · c2

Найдем отношение объемов.

V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2)

Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы.

По условию c1 = 1,5 c2 (первая коробка в полтора раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой).

Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1

Подставим эти выражения в формулу отношения объемов:

V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2) = (a1 · b1 · 1,5c2)/ ( 3a1 · 3b1 · c2) = (a1 · b1 · 1,5c2)/ ( 9a1 · b1 · c2)

Сократим получившуюся дробь на a1 · b1 · c2. Получим:

V1 / V2 = (a1 · b1 · 1,5c2)/ ( 9a1 · b1 · c2) = 1,5/9 = 15/(10 · 9) = 3/(2 · 9) = 1/ (2 · 3) = 1/6.

Объем первой коробочки в 6 раза меньше объема второй. Ответ: 6.

Вариант 13МБ4

От деревянного кубика отпилили все его вершины (см. рис.). Сколько граней у получившегося многогранника (невидимые ребра на рисунке не изображены)?

Сначала вспомним сколько всего граней и вершин у куба: шесть граней и восемь вершин. Теперь на месте каждой вершины образуется новая грань после отпила, значит у модифицированного в задании куба шесть родных граней и восемь новых (после отпила). Итого получаем: 6 + 8 = 14 граней.

Ответ: 14.

Если бы нас спросили, а сколько вершин у нового «куба». Очевидно, если вместо одной становится три, а их всего восемь, то получаем: 8 • 3 = 24

Вариант 13МБ5

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго – 6 и 4. Во сколько раз объем второго цилиндра больше объема первого?

Алгоритм выполнения
  1. Записываем ф-лу для вычисления объема цилиндра.
  2. Вводим обозначения для радиуса основания и высоты 1-го цилиндра. Выражаем подобным образом аналогичные параметры 2-го цилиндра.
  3. Формируем формулы для объема 1-го и 2-го цилиндров.
  4. Вычисляем отношение объемов.
Решение:

Объем цилиндра равен: V=πR2H. Обозначим радиус основания 1-го цилиндра через R1, а его высоту – через Н1. Соответственно, радиус основания 2-го цилиндра обозначим через R2, а высоту – через Н2. Отсюда получим: V1=πR12H1, V2=πR22H2. Запишем искомое отношение объемов:

. Подставляем в полученное отношение числовые данные:

. Вывод: объем 2-го цилиндра больше объема 1-го в 6 раз.

Вариант 13МБ6

В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды в баке поднялся в 1,4 раза. Найдите объем детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.

Алгоритм выполнения
  1. Вводим обозначения для объема до погружения детали и после. Пусть это будет соответственно V1 и V2.
  2. Фиксируем значение для V1. Выражаем V2 через V1. Находим значение V2.
  3. Переводим результат, полученный в литрах, в куб.см.
Решение:

Объем бака до погружения V1=5 (л). Т.к. после погружения детали объем стал равным V2. Согласно условию, увеличение составило 1,4 раза, поэтому V2=1,4V1. Отсюда получаем: V2=1,4·5=7 (л). Т.о., разница объемов, которая и составляет объем детали, равна:

V2–V1=7–5=2 (л).

2 л=2·1000=2000 (куб.см).

Вариант 13МБ7

Вода в сосуде цилиндрической формы находится на уровне h=80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.

Алгоритм выполнения
  1. Записываем ф-лу для расчета объема цилиндра.
  2. На основании этой формулы записываем 2 уравнения – для вычисления объема воды в 1-м и 2-м сосудах. Для этого используем в формуле соответствующие индексы 1 и 2.
  3. Поскольку воду просто переливают их одного сосуда в другой, то ее объем не изменяется. Поэтому приравниваем полученные уравнения. Из полученного единственного уравнения находим уровень воды во 2-м сосуде, выраженный высотой h2.
Решение:

Объем цилиндра равен: V=Sоснh=πR2h. Объем воды в 1-м сосуде: V1=πR12h1. Объем во 2-м сосуде: V2=πR22h2. Приравниваем V1 и V2: πR12h1=πR22h2. Сокращаем на π, выражаем h2:

 . По условию R2=2R1. Отсюда:

Читайте также:  Кровь из сосудов глаза

.

Вариант 13МБ8

От деревянной правильной треугольной призмы отпилили все ее вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые ребра на рисунке не изображены)?

Алгоритм выполнения
  1. Определяем количество вершин у треугольной призмы.
  2. Анализируем изменения, которые произойдут при отпиливании всех вершин. Подсчитываем кол-во вершин у нового многогранника.
Решение:

Вершины призмы формируют вершины оснований (верхнего и нижнего). Поскольку основаниями правильной треугольной призмы являются правильные треугольники, то вершин у такой призмы 3·2=6 штук.

Спилив вершины призмы, получим вместо них небольшие (по сравнению с размерами самой призмы) треугольники. Это отображено и на рисунке. То есть вместо каждой вершины образуется 3 новых. Следовательно, их кол-во станет равным: 6·3=18.

Вариант 13МБ9

Даны две коробки, имеющие форму правильной четырехугольной призмы, стоящей на основании. Первая коробка в четыре с половиной раза ниже второй, а вторая второе уже первой. Во сколько раз объем первой коробки больше объема второй?

Алгоритм выполнения
  1. Вводим обозначения для линейных параметров коробок и их объемов.
  2. Определяем зависимость линейных параметров согласно условию.
  3. Записываем формулу для вычисления объема призмы.
  4. Адаптируем эту формулу для объемов коробок.
  5. Находим отношение объемов.
Решение:

Т.к. форма коробок – правильная призма, то в их основании лежат квадраты. Поэтому можем обозначить длину и ширину каждой коробки одинаково. Пусть для первой коробки это а1, а для второй а2. Высоты коробок обозначим соответственно h1 и h2. Объемы – V1 и V2.

Согласно условию, h2=4,5h1, а1=3а2. Объем призмы равен: V=Sоснh. Т.к. в основании коробок лежит квадрат, то Sосн=а2. Отсюда: V=a2h. Для 1-й коробки имеем: V1=a12h1. Для 2-й коробки: V2=a22h2. Тогда получаем отношение: Ответ: 2

Вариант 13МБ10

В сосуде, имеющем форму конуса, уровень жидкости достигает ½ высоты. Объем сосуда 1600 мл. Чему равен объем налитой жидкости? Ответ дайте в миллилитрах.

Алгоритм выполнения
  1. Доказываем, что данные в условии конусы подобны.
  2. Определяем коэффициент подобия.
  3. Используя свойство для объемов подобных тел, находим объем жидкости.
Решение:

Если рассматривать сечение конуса по двум его противоположно расположенным образующим (осевое сечение), то видим, что полученные таким способом треугольники большого конуса и малого (образованного жидкостью) подобны. Это следует из равенства их углов. Т.е. имеем: у конусов подобны высоты и радиусы основания. Отсюда делаем вывод: т.к. линейные параметры конусов подобны, то и конусы подобны.

По условию высота малого конуса (жидкости) составляет ½ высоты конуса. Значит, коэффициент подобия малого и большого конусов равен ½.

Применяем св-во подобия тел, которое заключается в том, их объемы относятся как коэффициет подобия в кубе. Обозначим объем большого конуса V1, малого – V2. Получим:

. Поскольку по условию V1=1600 мл, то V2=1600/8=200 мл.

Вариант 13МБ11

Даны два шара с радиусами 4 и 1. Во сколько раз объем большего шара больше объема меньшего?

Алгоритм выполнения
  1. Записываем формулу для вычисления объема шара.
  2. Адаптируем формулу для каждого из шаров. Для этого используем индексы 1 и 2.
  3. Записываем отношение объемов, вычисляем его, подставив числовые данные из условия.
Решение:

Объем шара вычисляется по ф-ле: . Отсюда объем 1-го (большего) шара равен , 2-го (меньшего) шара – . Составим отношение объемов:

Подставляем в полученную формулу числовые данные из условия:

Вывод: объем большего шара в 64 раза больше.

Вариант 13МБ12

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 18, а второго – 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?

Алгоритм выполнения
  1. Записываем формулу для определения площади бок.поверхности цилиндра.
  2. Переписываем ее дважды с использованием соответствующих индексов – для 1-го (большего) и 2-го (меньшего) цилиндров.
  3. Находим отношение площадей. Вычисляем отношения, используя числовые данные из условия.
Решение:

Площадь бок.поверхности цилиндра вычисляется так: S=2πRH. Для 1-го цилиндра имеем: S1=2πR1H1. Для 2-го цилиндра: S2=2πR2H2. Составим отношение этих площадей:

Найдем числовое значение полученного отношения:

Вывод: площадь боковой поверхности 1-го цилиндра больше в 12 раз.

Вариант 13МБ13

Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?

Алгоритм выполнения
  1. Записываем формулу для определения массы большего шаров через плотность и объем.
  2. Объем в этой формуле расписываем через ф-лу объема шара (через его радиус).
  3. Записываем ф-лу для массы меньшего шара, расписываем объем через радиус (по аналогии с пп.1 и 2).
  4. Поскольку оба шара изготовлены из одного и того же материала, то найденное значение для плотности можем использовать в ф-ле для массы меньшего шара. Вычисляем искомую массу.
Решение:

Масса большего (1-го) шара равна: m1=ρV1. Объем этого шара составляет V1=(4/3)πR13. Отсюда получаем: m1=(4/3)πρR13. Из этого уравнения выразим плотность: . Масса меньшего (2-го) шара равна: m2V2. Объем шара: V2=(4/3)πR23. В ур-ние для m2 подставим выражения для ρ и V2. Получаем:

Читайте также:  Гипертензия сосудов малого круга

Вычисляем m2:

Вариант 13МБ14

В бак, имеющий форму правильной четырехугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объем детали сложной формы, ее полностью погружают в эту жидкость. Найдите объем детали, если после ее погружения уровень жидкости в баке поднялся на 10 см. Ответ дайте в кубических сантиметрах.

Алгоритм выполнения
  1. Определяем часть призмы, соответствующую объему погруженной детали.
  2. Вычисляем объем детали на основании формулы для определения объема прямой призмы с квадратом в основании.
Решение:

Погруженная в жидкость деталь занимает объем, соответствующий столбу жидкости, высота которого равна 10 см, т.е. разнице, возникшей между начальной высотой жидкости и конечной (после погружения). Это означает, что деталь имеет объем, равный части жидкости, занимающей объем 40х40х10 (см).

Найдем этот объем:

V=40·40·10=16000 (см3).

Даниил Романович | ???? Скачать PDF |

Источник

Понятие объёма

Можно провести аналогию понятия объема сосуда с понятием площади. Напомним, что понятие площади применимо к плоскости. Любой многоугольник имеет свою площадь.

В качестве единицы измерения площади принято брать квадрат со стороной, равной единице. В случае объёма за единицу измерения берут куб с ребром, равным единице. Этот куб называют кубическим сантиметром (метром, миллиметром и т. д.) и обозначают $1 см^3$ (соответственно, $1 м^3, 1 мм^3$ и т.п.).

Другую аналогию между площадью и объёмом можно провести в самой процедуре их измерения. Объём выражается положительным числом, показывающим количество единиц измерения объёмов и частей, которые укладываются в данном теле. Число единиц объёма тела зависит от выбранной единицы измерения, то есть меняется в зависимости от того, выбраны $cм^3, м^3$ и т.п. Единицу измерения традиционно указывают после числа.

Приведём простейший пример. $V=3 мм^3$ – эта запись означает, что объём некоторого сосуда равен 3-м, если в качестве единицы измерения взят кубический миллиметр.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Основные свойства объёмов:

  1. У равных сосудов равные объёмы.
  2. В случае, когда сосуд состоит из нескольких сосудов, то его объём равен сумме всех этих сосудов.

Эти свойства аналогичны свойствам длин отрезков и площадей многоугольников.

Часто требуется найти объём параллелепипеда, пирамиды, цилиндра, конуса и шара. Параллельно с формулами объёма дадим ключевые определения. Чтобы рассмотреть такую фигуру как параллелепипед, необходимо дать два важных определения:

  1. Многогранник – это тело, ограниченное несколькими многоугольниками (гранями). Стороны граней называют рёбрами, а концы рёбер – вершинами.
  2. Призма – это многогранник, который составлен из двух параллельных многоугольников (оснований призмы), вершины которых соединены параллельными и равными друг другу отрезками (боковыми ребрами призмы), образующими параллелограммы (боковые грани призмы).

Нахождение объёма параллелепипеда

Параллелепипед – это многогранник, составленный из 6-ти прямоугольников. Или это четырёхугольная призма, в которой основания – параллелограммы. Форму параллелепипеда имеют коробки, комнаты и многие другие предметы из нашей повседневной жизни.

В случае, когда у параллелепипеда боковые ребра перпендикулярны к плоскостям оснований, а боковые грани и основания – прямоугольники, то этот параллелепипед называют прямоугольным (прямым).

Для нахождения объёма прямоугольного параллелепипеда необходимы его измерения. Измерения параллелепипеда – это длины трёх рёбер с общей вершиной. В речи мы называем измерениями “длину”, “ширину” и “высоту” (например, при измерении комнаты).

Определение 1

Объём прямоугольного параллелепипеда равен произведению трёх его измерений: $V=abc$.

Если площадь основания $S=ac$, а высота $h=b$, то формула объёма может быть следующей: $V=Sh$.

Нахождение объёма пирамиды

Пирамида – это многогранник, образованный из $n$-угольника (в качестве основания) и треугольников (в качестве боковых граней), построенных путем соединения одной точки (вершины пирамиды) отрезками (боковыми рёбрами) с вершинами многоугольника.

Рисунок 1. Пирамида. Автор24 — интернет-биржа студенческих работ

Определение 2

Объём пирамиды равен одной трети произведения площади основания на высоту. В данном случае высота представляет собой перпендикулярный к плоскости основания отрезок, который соединяет вершину пирамиды с плоскостью её основания.

$V=frac{Sh}{3}$.

Нахождение объёма цилиндра

Цилиндр – некоторое тело (или сосуд), полученное в результате вращения некоторого прямоугольника вокруг своей оси (одной из сторон прямоугольника).

Рисунок 2. Цилиндр. Автор24 — интернет-биржа студенческих работ

Определение 3

Объём цилиндра равен произведению площади основания на высоту: $V=Sh$.

Нахождение объёма конуса

Конус – это некоторое тело (сосуд), полученное в результате вращения прямоугольного треугольника вокруг его катета.

Рисунок 3. Конус. Автор24 — интернет-биржа студенческих работ

Определение 4

Объём конуса равен одной трети произведения площади основания на высоту: $V=frac{Sh}{3}$.

Нахождение объёма шара

Сфера – это поверхность, состоящая из всех точек пространства, расположенных на равном расстоянии (радиусе) от данной точки (центра).

Рисунок 4. Сфера. Автор24 — интернет-биржа студенческих работ

Шар – это некоторое тело (сосуд), которое ограничено сферой. Другой вариант определения: шар – это тело (сосуд), полученное в результате вращения полукруга вокруг диаметра этого полукруга.

Рисунок 5. Шар. Автор24 — интернет-биржа студенческих работ

Определение 5

Объём шара: $V=frac{4}{3}pi R^3$, где $R$ – радиус шара.

Таким образом, мы перечислили все основные формулы объёма основных фигур в стереометрии.

Источник