Как найти разность уровней воды в сосудах

Как найти разность уровней воды в сосудах thumbnail

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.

Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.

Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.

Основное уравнение гидростатики

P = P1 + ρgh

где P1 – это среднее давление на верхний торец призмы,

P – давление на нижний торец,

g – ускорение свободного падения,

h – глубина погружения призмы под свободной поверхностью жидкости.

ρgh – сила тяжести (вес призмы).

Звучит уравнение так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости

Доказательство закона сообщающихся сосудов

Возвращаемся к разговору про сообщающиеся сосуды.

Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.

Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.

Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики

P = P1 + ρgh1

если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.

Это давление можно определить следующим образом

P = P2 + ρgh2

где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2

P1 + ρ1gh1 = P2 + ρ2gh2

В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем

ρ1h1 = ρ2h2

или

ρ1 / ρ2 = h2 / h1

т.е. закон сообщающихся сосудов состоит в следующем.

В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Свойства сообщающихся сосудов

Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.

Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.

Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.

В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.

Приборы основанные на законе сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.

Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.

В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.

Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.

Применение сообщающихся сосудов

Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.

Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.

Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.

Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.

В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.

Читайте также:  Расширение сосуда без стента

Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.

В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.

Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.

Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.

Видео по теме

Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.

Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:

Источник

4.2. Элементы гидростатики

4.2.5. Сообщающиеся сосуды

Сообщающимися называются сосуды, соединенные между собой каналом, заполненным жидкостью.

Для сообщающихся сосудов справедлив закон сообщающихся сосудов: высоты взаимно уравновешенных столбов разнородных жидкостей обратно пропорциональны плотностям этих жидкостей:

h 1 h 2 = ρ 2 ρ 1 ,

где h1 – высота столба жидкости плотностью ρ1; h2 – высота столба жидкости плотностью ρ2.

Указанный закон справедлив в отсутствие сил поверхностного натяжения.

Если сообщающиеся сосуды заполнены однородной жидкостью

ρ1 = ρ2,

то свободные поверхности жидкости устанавливаются на одном уровне, независимо от формы сосудов (рис. 4.14):

h1 = h2,

где h1 – высота столба жидкости в левом колене; h2 – высота столба жидкости в правом колене сообщающихся сосудов.

Рис. 4.14

Если сообщающиеся сосуды заполнены разнородными жидкостями

ρ1 ≠ ρ2,

то свободные поверхности жидкостей, независимо от формы сосуда (рис. 4.15), устанавливаются так, что выполняется отношение

h 1 h 2 = ρ 2 ρ 1 ,

где h1 – высота столба жидкости плотностью ρ1; h2 – высота столба жидкости плотностью ρ2.

Рис. 4.15

Если сообщающиеся сосуды заполнены несколькими жидкостями (например, как показано на рис. 4.16), то гидростатическое давление на одном уровне (отмеченном пунктиром) в левом колене определяется формулой

p1 = ρ1gh1,

в правом колене –

p2 = ρ2gh2 + ρ3gh3.

Рис. 4.16

Равенство давлений на указанном уровне

p1 = p2

позволяет записать тождество:

ρ1h1 = ρ2h2 + ρ3h3.

Пример 28. Два высоких сосуда, диаметр одного из которых в два раза больше диаметра второго, в нижней части соединены тонким шлангом. Площадь сечения узкого сосуда равна 10 см2. Система заполнена некоторым количеством жидкости плотностью 1,6 г/см3. Найти, на сколько миллиметров повысится уровень жидкости в каждом из сосудов, если в систему добавить 0,12 кг той же жидкости.

Решение. В сообщающихся сосудах однородная жидкость устанавливается на одном уровне.

Добавление в систему некоторого количества жидкости массой m приводит к ее распределению по двум сосудам в соответствии с площадью их поперечного сечения:

  • в первом сосуде оказывается масса жидкости

m1 = ρV1 = ρ∆h1S1,

где ρ – плотность жидкости; V1 = S1∆h1 – объем жидкости в первом сосуде; S1 – площадь поперечного сечения первого сосуда; ∆h1 – повышение уровня жидкости в первом сосуде;

  • во втором сосуде оказывается масса жидкости

m2 = ρV2 = ρ∆h2S2,

где V2 = S2∆h2 – объем жидкости во втором сосуде; S2 – площадь поперечного сечения второго сосуда; ∆h2 – повышение уровня жидкости во втором сосуде.

Повышение уровней жидкости в обоих сосудах одинаково:

∆h1 = ∆h2 = ∆h,

поэтому масса жидкости, добавленной в систему, определяется формулой

m = m1 + m2 = ρ∆h(S1 + S2).

Выразим отсюда искомое значение ∆h:

Δ h = m ρ ( S 1 + S 2 ) .

Площади поперечного сечения сосудов связаны с их диаметрами формулой:

  • для первого (широкого) сосуда

S 1 = π d 1 2 4 ,

  • для второго (узкого) сосуда

S 2 = π d 2 2 4 ,

где d1 = 2d2 – диаметр первого (широкого) сосуда; d2 – диаметр второго (узкого) сосуда.

Отношение площадей

S 1 S 2 = π d 1 2 4 4 π d 2 2 = d 1 2 d 2 2 = ( d 1 d 2 ) 2 = ( 2 d 2 d 2 ) 2 = 4

позволяет найти площадь широкого сосуда:

S1 = 4S2.

Подставив S1 в формулу для ∆h

Δ h = m ρ ( 4 S 2 + S 2 ) = m 5 ρ S 2 ,

рассчитаем значение высоты, на которую повысится уровень жидкости в сосудах:

Δ h = 0,12 5 ⋅ 1,6 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 15 ⋅ 10 − 3 м = 15 мм.

Пример 29. Два высоких сосуда, диаметр одного из которых в два раза больше диаметра другого, в нижней части соединены тонким шлангом. Площадь сечения широкого сосуда составляет 10 см2. Система заполнена жидкостью плотностью 6,0 г/см3. В узкий сосуд добавляют 0,12 кг жидкости плотностью 2,0 г/см3, а затем – 0,12 кг жидкости плотностью 4,0 г/см3. Найти разность уровней жидкостей в сосудах.

Решение. В сообщающихся сосудах неоднородная жидкость устанавливается на разных уровнях таким образом, что гидростатическое давление на выбранном уровне оказывается одинаковым:

p1 = p2,

где p1 – давление в широком сосуде; p2 – давление в узком сосуде.

На рисунке пунктирной линией обозначен уровень, на котором будем рассчитывать гидростатическое давление в широком и узком сосудах.

Читайте также:  Сосуды лечить в москве

Гидростатическое давление на выбранном уровне:

  • в широком сосуде

p1 = ρ1gh1,

где ρ1 – плотность жидкости, заполняющей систему изначально; g – модуль ускорения свободного падения; h1 – высота столба жидкости в широком сосуде;

  • в узком сосуде

p2 = ρ2gh2 + ρ3gh3,

где ρ2 – плотность первой жидкости, добавленной в узкий сосуд; h2 – высота столба первой жидкости; ρ3 – плотность второй жидкости, добавленной в узкий сосуд; h3 – высота столба второй жидкости.

Равенство давлений на указанном уровне

ρ1gh1 = ρ2gh2 + ρ3gh3

позволяет определить высоту столба жидкости в широком сосуде:

h 1 = 1 ρ 1 ( ρ 2 h 2 + ρ 3 h 3 ) ,

где высоты жидкостей h2 и h3 определяются соответствующими массами и плотностями:

  • для первой жидкости

h 2 = m 2 ρ 2 S 2 ;

  • для второй жидкости

h 3 = m 3 ρ 3 S 2 ,

где S2 – площадь поперечного сечения узкого сосуда; m2 – масса первой жидкости, добавленной в узкий сосуд; m3 – масса второй жидкости, добавленной в узкий сосуд.

Подстановка h2 и h3 в формулу для h1 дает

h 1 = 1 ρ 1 ( ρ 2 m 2 ρ 2 S 2 + ρ 3 m 3 ρ 3 S 2 ) = m 2 + m 3 ρ 1 S 2 .

Площади поперечного сечения сосудов связаны с их диаметрами формулой:

  • для широкого сосуда

S 1 = π d 1 2 4 ,

  • для узкого сосуда

S 2 = π d 2 2 4 ,

где d1 = 2d2 – диаметр широкого сосуда; d2 – диаметр узкого сосуда.

Отношение площадей

S 1 S 2 = π d 1 2 4 4 π d 2 2 = d 1 2 d 2 2 = ( d 1 d 2 ) 2 = ( 2 d 2 d 2 ) 2 = 4

позволяет найти площадь узкого сосуда:

S 2 = S 1 4 .

Таким образом, высота столба жидкости в широком сосуде определяется выражением

h 1 = 4 ( m 2 + m 3 ) ρ 1 S 1 .

Высота столба жидкости над указанным уровнем в узком сосуде есть сумма:

h 2 + h 3 = m 2 ρ 2 S 2 + m 3 ρ 3 S 2 = 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 ) .

Искомая разность верхних уровней жидкостей в узком (h2 + h3) и широком h1 сосудах рассчитывается по формуле

Δ h = ( h 2 + h 3 ) − h 1 = 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 ) − 4 ( m 2 + m 3 ) ρ 1 S 1 =

= 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 − ( m 2 + m 3 ) ρ 1 ) .

Произведем вычисление:

Δ h = 4 10 ⋅ 10 − 4 ( 0,12 2,0 ⋅ 10 3 + 0,12 4,0 ⋅ 10 3 − 0,12 + 0,12 6,0 ⋅ 10 3 ) = 0,20 м = 20 см.

Источник

Разность уровней 2 может быть найдена по значениям глубин воды в лотке до и после щита, если дно лотка до и после щита имеет одну и ту же отметку. Разность уровней воды до и после щита может быть определена, как это описано в п. 6.[ …]

Разности уровней воды в различных сооружениях – фильтре 3, осветлителе 2 (или отстойнике), камере хлопьеобразования и смесителе 1 – определяют в зависимости от гидравлических сопротивлений (потерь напора) как в самих сооружениях, так и на пути движения воды – в трубах, каналах, лотках и т. д. (см. табл. 12).[ …]

Разность уровней воды до щита и после него может быть также определена аналогично тому, как это описано при определении расхода воды водосливами.[ …]

Здесь Н – разность уровней воды в осветлителе и в желобе, равная 0,05 м.[ …]

Благодаря разности уровней воды в распределительной чаше и в осветлителе, разной 0,6-1 м, а также большой скорости движения воды в центральной трубе происходит засасывание воздуха из атмосферы.[ …]

Расчетная разность уровней воды при ее поступлении в осветлитель и на выходе из него представляет собой сумму потерь напора в распределительных трубах (или каналах), включая отверстия в них; потерь напора в слое взвешенного осадка; потерь напора в сборных трубах или лотках и перепада уровней между сборными трубами или каналами и общим сборным каналом осветлителя.[ …]

По методике обработки воды скорые фильтры подразделяются на работающие в условиях предшествующей коагуляции и фильтры, в которых коагуляция совпадает по времени с фильтрованием. По строению фильтрующего слоя фильтры могут быть однослойные и двухслойные, а также с односторонней и двухсторонней фильтрацией воды. В зависимости от способа создания напора, необходимого лля преодоления сопротивления в фильтрующей среде, различают фильтры самотечные, в которых напор создается за счет разности уровней воды на фильтре и в резервуаре чистой воды; напорные, в которых напор создается насосом; реже всасывающие, которые работают за счет разрежения, создаваемого насосом, отсасывающим воду из поддонного пространства фильтра.[ …]

Процесс микрофильтрации воды полностью автоматизируется. Для обеспечения автоматического поддержания заданной потери напора в фильтрующих сетках каждый микрофильтр оборудуется гидравлическим дифференциальным регулятором, подключаемым на разность уровней воды, и задвижкой с гидроприводом, устанавливаемой на трубопроводе промывной воды. Дифференциальный регулятор комплектуется с золотниковым гидравлическим распределителем, обеспечивающим автоматическое управление гидроприводом задвижки, благодаря чему на промывку сеток подается струя воды необходимой интенсивности.[ …]

После установления постоянного уровня воды в пьезометрах при данном напоре берут показания по пьезометрам и вычисляют разность уровней воды в них, а также замеряют расход воды в определенные интервалы времени. При данном напоре делают два-три замера и записывают температуру используемой воды.[ …]

Скорые фильтры используются для очистки воды с предварительным осветлением и без осветления (прямоточные фильтры). В зависимости от способа создания напора, необходимого для преодоления сопротивления в фильтрующем слое, различают фильтры открытые самотечные (безнапорные), в которых перепад давления создается за счет разности уровней воды на фильтре и в резервуаре чистой воды, и напорные, работающие под давлением, создаваемым насосом; по направлению движения воды различают однопоточные скорые фильтры, в которых фильтрование производится сверху вниз, и двухпоточные – фильтрование воды осуществляется одновременно сверху вниз и снизу вверх. Выбор системы фильтров для станций обработки воды производится на основании технико-экономических показателей.[ …]

Читайте также:  Приборы для исследования сосудов

Фильтрование на фильтре Вако происходит только за счет разности уровней воды внутри и снаружи барабана. Эффективность осветления сточной воды, зависящая от многих факторов (характера и количества взвешенных веществ, толщины и качества подслоя и др.), достигает 80% при содержании взвешенных веществ в осветленной воде 10-20 мг/л.[ …]

Более перспективной мембранной технологией опреснения вод повышенной минерализации является обратный осмос (гиперфильтрация). Данный метод опреснения основан на явлении осмотического переноса, т. е. на фильтровании воды через набор полупроницаемых мембран, пропускающих молекулы воды, но задерживающих ионы солей. Сущность процесса можно представить следующим образом. Если полупроницаемой мембраной разделить растворы различной концентрации, то молекулы воды будут двигаться в сторону выравнивания концентраций, т. е. из более пресной воды в более соленую. Этот переход будет наблюдаться до тех пор, пока концентрация растворов по обе стороны мембраны не станет одинаковой. Однако при этом объем изначально более соленой воды увеличится. Разность уровней воды по обе стороны мембраны, соответствующая равновесной концентрации, и характеризует осмотическое давление. Совершенно очевидно, что для опреснения соленой воды необходимо процесс направить в другую сторону.[ …]

Водослив с установленной но лоту цодпорной стенкой. Количество стока высчитывается из разности уровней воды к, которые переносятся с шшощью рейки на измерительный прибор.

Действие напорно-всасывающей системы основано на использовании напора, создаваемого вследствие разности уровней воды в фильтре и в дренажном канале. При промывке трубы работают по принципу сифона с подсосом воды и взвеси. Скорость воды в конце дырчатых труб- 1,5-2,5 м/сек.[ …]

Для нормальной работы решетки-дробилки и удерживания загрязнений на барабане необходимо обеспечить разность уровней воды в подводящем и отводящем каналах, соответствующую потерям напора. Минимальные потери напора колеблются от 50 мм для решеток-дробилок малых размеров до 100 мм для более крупных установок.[ …]

В промышленности применяют различные (конструкции микрофильтров. Процесс фильтрации здесь происходит только за счет разности уровней воды внутри и снаружи барабана.[ …]

При проектировании осветлителей с естественной аэрацией в соответствии с нормами их число принимается не менее двух, диаметр – не более 9 м; разность уровней воды (для обеспечения аэрации) – 0,6 м. Объем камеры флокуляции должен обеспечивать 20-минутное пребывание воды. Глубина камеры составляет 4-5 м, диаметр нижнего сечения назначается исходя из скорости движения воды (8-10 мм/с). Скорость движения воды в центральной трубе 0,5-0,7 м/с, длина этой трубы 2-3 м. Глубина нейтрального слоя между нижним краем камеры флокуляции и поверхностью осадка в иловой части принимается равной 0,6 м.[ …]

При моделировании методом ЭГДА строят модель изучаемого участка и в местах, соответствующих источникам фильтрации, на модель подается через шины электрический ток. Разности уровней воды соответствует на модели разность потенциалов. После включения электрический ток в модели движется аналогично движению потока фильтрационных вод. Линии токов в природе имеют направление от верхнего бьефа к нижнему, соответственно на модели линии электрического тока направлены от одной шины с большим потенциалом к другой- с меньшим потенциалом. Линии разных напоров, которые на модели соответствуют линиям равных потенциалов, перпендикулярны линиям тока.[ …]

В формулах (7.3) – (7.5) п0 и т0 – пористость и мощность пород над эксплуатируемым пластом (в случаях «а» и «б» – это породы зоны аэрации, в случае «в» – породы верхнего слабопроницаемого слоя), АН – разность уровней воды основного и покровного слоев (для случая «в»).[ …]

Накапливающийся во взвешенном слое осветлителя осадок отбирается в осадкоуплотнители, где он уплотняется перед выпуском в водосток. Для этой цели широко применяются конструкции с принудительным отсосом осадка за счет разности уровней воды в осадкоуплотнителе и осветлителе.[ …]

Пересечения самотечных трубопроводов с реками, автомобильными и железными дорогами и другими инженерными сооружениями часто выполняются в виде дюкеров, которые представляют собой короткие трубы, огибающие препятствие снизу. Движение воды в дюкере происходит под напором, образующимся в результате разности уровня воды в его начале и конце.[ …]

Длина каждого бассейна 28,9 м, ширина – 9,55 м, глубйна общая – 10,35 м, из них осадочная часть – 2,4 м, нейтральная зона – 0,5 м, глубина септической части – 5,3 м и наконец нижняя часть для перегнившего ила – высотой 1,55 м. Средняя годовая температура сточной воды 13°. Время перегнивания – 80 дней. Емкость септической части на одного жителя – 43 л; материал – железобетон. Днище сложено из местного камня (песчаника) и покрыто сверху цементной штукатуркой. Септическая часть разделена железобетонными перегородками на четыре ячейки. Ширина осадочных желобов 3,1 м. Разность уровней воды в отстойнике и в конце трубы для отжима ила 1,5 м.[ …]

Уход за решетками заключается в своевременной очистке их от задержанных отбросов. При ручной очистке решетки деревянными граблями (применение стальных граблей или вил запрещается по противопожарным соображениям) необходимо следить за тем, чтобы подпор (разность уровня воды выше и ниже решетки), образующийся вследствие накопления на решетке различных предметов, не превышал 5-10 см. Количество отбросов учитывают объемным способом.[ …]

Источник