Как найти удельную теплоемкость сосуда

Как найти удельную теплоемкость сосуда thumbnail

Удельная теплоёмкость — это энергия, которая требуется для увеличения температуры 1 грамма чистого вещества на 1°. Параметр зависит от его химического состава и агрегатного состояния: газообразное, жидкое или твёрдое тело. После его открытия начался новый виток развития термодинамики, науки о переходных процессах энергии, которые касаются теплоты и функционирования системы.

Как правило, удельная теплоёмкость и основы термодинамики используются при изготовлении радиаторов и систем, предназначенных для охлаждения автомобилей, а также в химии, ядерной инженерии и аэродинамике. Если вы хотите узнать, как рассчитывается удельная теплоёмкость, то ознакомьтесь с предложенной статьёй.

Формула

Перед тем, как приступить к непосредственному расчёту параметра следует ознакомиться с формулой и её компонентами.

Формула для расчёта удельной теплоёмкости имеет следующий вид:

  • с = Q/(m*∆T)

Знание величин и их символических обозначений, использующихся при расчёте, крайне важно. Однако необходимо не только знать их визуальный вид, но и чётко представлять значение каждого из них. Расчёт удельной теплоёмкости вещества представлен следующими компонентами:

ΔT – символ, означающий постепенное изменение температуры вещества. Символ «Δ» произносится как дельта.

ΔT можно рассчитать по формуле:

ΔT = t2–t1, где

  • t1 – первичная температура;
  • t2 – конечная температура после изменения.

m – масса вещества используемого при нагреве (гр).

Q – количество теплоты (Дж/J)

На основании Цр можно вывести и другие уравнения:

  • Q = m*цp*ΔT – количество теплоты ;
  • m = Q/цр*(t2 – t1) – массы вещества;
  • t1 = t2–(Q/цp*m) – первичной температуры;
  • t2 = t1+(Q/цp*m) – конечной температуры.

Инструкция по расчёту параметра

Рассчитать с вещества достаточно просто и чтобы это сделать нужно, выполнить следующие шаги:

  1. Взять расчётную формулу: Теплоемкость = Q/(m*∆T)
  2. Выписать исходные данные.
  3. Подставить их в формулу.
  4. Провести расчёт и получим результат.

В качестве примера произведём расчёт неизвестного вещества массой 480 грамм обладающего температурой 15ºC, которая в результате нагрева (подвода 35 тыс. Дж) увеличилась до 250º.

Согласно инструкции приведённой выше производим следующие действия:

Выписываем исходные данные:

  • Q = 35 тыс. Дж;
  • m = 480 г;
  • ΔT = t2–t1 =250–15 = 235 ºC.

Берём формулу, подставляем значения и решаем:

с=Q/(m*∆T)=35тыс.Дж/(480 г*235º)=35тыс.Дж/(112800 г*º)=0,31 Дж/г*º.

Расчёт

Выполним расчёт CP воды и олова при следующих условиях:

  • m = 500 грамм;
  • t1 =24ºC и t2 = 80ºC – для воды;
  • t1 =20ºC и t2 =180ºC – для олова;
  • Q = 28 тыс. Дж.

Для начала определяем ΔT для воды и олова соответственно:

  • ΔТв = t2–t1 = 80–24 = 56ºC
  • ΔТо = t2–t1 = 180–20 =160ºC

Затем находим удельную теплоёмкость:

  1. с=Q/(m*ΔТв)= 28 тыс. Дж/(500 г *56ºC) = 28 тыс.Дж/(28 тыс.г*ºC) = 1 Дж/г*ºC.
  2. с=Q/(m*ΔТо)=28тыс.Дж/(500 гр*160ºC)=28 тыс.Дж/(80 тыс.г*ºC)=0,35 Дж/г*ºC.

Таким образом, удельная теплоемкость воды составила 1 Дж/г *ºC, а олова 0,35 Дж/г*ºC. Отсюда можно сделать вывод о том, что при равном значении подводимого тепла в 28 тыс. Дж олово нагрется быстрее воды, поскольку его теплоёмкость меньше.

Теплоёмкостью обладают не только газы, жидкости и твёрдые тела, но и продукты питания.

Как рассчитать теплоемкость продуктов питания

При расчёте емкости питания уравнение примет следующий вид:

с=(4.180*w)+(1.711*p)+(1.928*f)+(1.547*c)+(0.908 *a), где:

  • w – количество воды в продукте;
  • p – количество белков в продукте;
  • f – процентное содержание жиров;
  • c – процентное содержание углеводов;
  • a – процентное содержание неорганических компонентов.

Определим теплоемкость плавленого сливочного сыра Viola. Для этого выписываем нужные значения из состава продукта (масса 140 грамм):

  • вода – 35 г;
  • белки – 12,9 г;
  • жиры – 25,8 г;
  • углеводы – 6,96 г;
  • неорганические компоненты – 21 г.

Затем находим с:

  • с=(4.180*w)+(1.711*p)+(1.928*f)+(1.547*c)+(0.908*a)=(4.180*35)+(1.711*12,9)+(1.928*25,8) + (1.547*6,96)+(0.908*21)=146,3+22,1+49,7+10,8+19,1=248 кДж /кг*ºC.

Полезные советы

Всегда помните, что:

  • процесс нагревания металла проходит быстрее, чем у воды, так как он обладает CP в 2,5 раза меньше;
  • по возможности преобразуйте полученные результаты в более высокий порядок, если позволяют условия;
  • в целях проверки результатов можно воспользоваться интернетом и посмотреть с для расчётного вещества;
  • при равных экспериментальных условиях более значительные температурные изменения будут наблюдаться у материалов с низкой удельной теплоёмкостью.

Видео

Разобраться в этой теме вам поможет видео урок.

Источник

Для сравнения теплоемкостей разных тел пользуются калориметром. Калориметр представляет собой металлический сосуд с крышкой, имеющий форму стакана. Сосуд ставят на пробки, помещенные в другой, больший сосуд так, что между обоими сосудами остается слой воздуха (рис. 367). Все эти предосторожности уменьшают отдачу теплоты окружающим телам.


Рис. 367. Калориметр

Сосуд наполняют известным количеством воды, температура которой до опыта измеряется (пусть она равна

). Затем берут тело, теплоемкость которого хотят измерить, и нагревают до известной температуры

 (например, помещают в пары кипящей воды, так что температура

). Нагретое тело опускают в воду калориметра, закрывают крышку и, помешивая мешалкой, ждут, пока температура в калориметре установится (это будет, когда вода и тело примут одинаковую температуру). Тогда отмечают эту температуру

.

Из результатов опытов можно найти удельную теплоемкость тела

, пользуясь тем, что уменьшение энергии охлаждающегося тела равно увеличению энергии нагревающейся при этом воды и калориметра, т. е. применяя закон сохранения энергии.

При не очень точных измерениях можно считать, что вода калориметра, сам калориметр, мешалка и тело, теплоемкость которого измеряется, за время опыта не успеют отдать заметное количество теплоты окружающим телам.

(При более точных измерениях надо внести соответственные поправки.) Поэтому суммы энергий тела, воды, калориметра и мешалки до и после опыта можно считать одинаковыми. Иначе говоря, энергия тела уменьшается при опыте настолько, насколько увеличивается энергия воды, калориметра и мешалки. Температура тела понижается на

Читайте также:  Как сделать так чтобы лопнули сосуды в глазах

. Так как никакой работы внутри калориметра не производится, то убыль энергии тела равна

, где

 — удельная теплоемкость вещества тела,

 — масса тела.

Вода нагревается на

 и приращение ее энергии равно

, где

 — удельная теплоемкость воды,

 — масса воды в калориметре. Предположим, что калориметр и мешалка сделаны из одного материала и общая их масса равна

, а удельная теплоемкость их материала равна

. Энергия калориметра и мешалки получит приращение, равное

. Энергией, необходимой для нагревания термометра, можно пренебречь, так как она обычно невелика. Приравнивая убыль энергии тела приращению энергии воды, калориметра и мешалки, получим

.

Это равенство часто называют уравнением теплового баланса. Разрешая его относительно

, находим

.

Таким образом, измерив

 найдем удельную теплоемкость исследуемого тела

, если известны удельные теплоемкости воды

 и материала калориметра

. Удельная теплоемкость воды

 может быть принята равной

 (§ 208). Удельную теплоемкость материала калориметра

 нужно определить отдельно: например, путем наблюдения теплового баланса при опускании в калориметр тела, сделанного из того же материала, что и стенки калориметра (т. е. сделав

). Определив раз навсегда удельную теплоемкость материала калориметра

, мы сможем делать все дальнейшие определения, используя полученное соотношение.

Удельная теплоемкость ряда веществ приведена в табл. 5. В тех случаях, когда температура не указана, значения удельной теплоемкости даны для комнатной температуры. В таблице показано на примере воды, меди и свинца, что удельная теплоемкость зависит от температуры. У твердых тел при повышении температуры она увеличивается. При очень низких температурах удельная теплоемкость всех тел быстро падает. Следует обратить внимание на очень большую по сравнению с другими веществами удельную теплоемкость воды. Заслуживает внимания также то, что удельная теплоемкость льда вдвое меньше теплоемкости воды. У других веществ теплоемкости в твердом и жидком состояниях также резко отличаются друг от друга.

Таблица 5. Удельная теплоемкость некоторых веществ

Вещество Вещество
Алюминий 0,880 Медь при 0,280
Асбест 0,210 » » 0,380
Вода при 4,180 Песок 0,840
» »

.

4,220 Ртуть 0,126
Воздух, свободно расширяющийся 1,010 Свинец при 0,130
Железо 0,460 » » 0,032
Кирпич 0,840 » » 0,143
Латунь 0,390 Сера 0,710
Лед при 2,100 Сосновое дерево 2,520
Стекло 0,840

Зная удельную теплоемкость вещества, всегда можно рассчитать, какое количество воды имеет такую же теплоемкость, как и данное тело (так называемый водяной эквивалент). Пусть, например, стакан калориметра сделан из латуни и имеет массу 100 г. Его теплоемкость равна

. Следовательно, водяной эквивалент этого стакана равен

. Нагревая в таком стакане 300 г воды, можно считать, что мы нагреваем только воду, но в количестве не 300 г, а 309,3 г. Теперь можно ответить на вопрос, каким образом в опыте, описанном в § 203, Джоуль мог учесть нагревание, кроме воды, также и сосуда. Он мог сделать это, пользуясь понятием водяного эквивалента.

209.1
. Два куска из одинакового материала (например, оба железные), но разной массы нагреты до различных температур. Увеличится или уменьшится их общий объем, если горячий кусок передаст некоторое количество теплоты холодному?

209.2
. В латунный стакан массы 163 г, имеющий температуру

, вливают 100 г воды при

 и 200 г воды при

. Пренебрегая обменом теплотой с окружающими телами, определите окончательную температуру воды. Предположим, что температуры вливаёмых порций воды равны указанным выше, но что имеет место обмен теплотой через стенки сосуда с окружающими предметами, Кай повлияет это обстоятельство на окончательную температуру воды в случае, если сперва наливается горячая, а потом холодная вода, и в случае, когда порядок наливания воды обратный?

Источник

Удельная теплоемкость — это энергия, необходимая для того, чтобы поднять температуру одного грамма чистого вещества на один градус Цельсия. Удельная теплоемкость вещества зависит от его химического состава и агрегатного состояния. Открытие удельной теплоемкости подстегнуло развитие термодинамики, науки о переходах энергии, касающейся теплоты и работы системы. Удельная теплоемкость и термодинамика широко используются в химии, ядерной инженерии и аэродинамики, а также в повседневной жизни для радиаторов и систем охлаждения автомобилей. Если вы хотите узнать, как вычислить удельную теплоемкость, следуйте приведенной ниже инструкции.

Освойте основы

  1. 1

    Ознакомьтесь с величинами, которые используются для расчета удельной теплоемкости. Очень важно знать величины, которые используются для расчета удельной теплоемкости. Вы должны знать, как выглядит символ каждой величины, и понимать, что он означает. Далее приведены величины, которые обычно используются в выражении для расчета удельной теплоемкости вещества:

    • Дельта, или символ «Δ», подразумевает изменение величины.
      • Например, если ваша первая температура (T1) составляет 150 ºC, а вторая (T2) составляет 20 ºC, тогда ΔT, или изменение температуры, составит 150 ºC – 20 ºC = 130 ºC.
    • Масса образца обозначается буквой «m».
    • Количество теплоты обозначается буквой «Q». Единица измерения количества теплоты — «Дж», или Джоуль.
    • «T» — это температура вещества.
    • Удельная теплоемкость обозначается буквой «Cp».
  2. 2

    Освойте выражение для определения удельной теплоемкости. Ознакомившись с величинами, которые используются для вычисления удельной теплоемкости, вы должны выучить уравнение для определения удельной теплоемкости вещества. Формула имеет вид: Cp = Q/mΔT.

    • Вы можете оперировать этой формулой, если хотите узнать изменение количества теплоты вместо удельной теплоемкости. Вот как это будет выглядеть:
      • ΔQ = mCpΔT

Вычислите удельную теплоемкость

  1. 1

    Изучите формулу. Сначала вам нужно изучить выражение для того, чтобы понять, что вам нужно сделать, чтобы найти удельную теплоемкость. Давайте рассмотрим следующую задачу: Определите удельную теплоемкость 350 г неизвестного вещества, если при сообщении ему 34 700 дж теплоты его температура поднялась с 22 до 173 ºC без фазовых переходов.

  2. 2

    Запишите известные и неизвестные факторы. Разобравшись с задачей, вы можете записать все известные и неизвестные переменные, чтобы лучше понять, с чем вы имеете дело. Вот как это делается:

    • m = 350 г
    • Q = 34 700 Дж
    • ΔT = 173 ºC – 22 ºC = 151 ºC
    • Cp = неизвестно
  3. 3

    Подставьте неизвестные факторы в уравнение. Известны все значения за исключением «Cpc», поэтому необходимо подставить в исходное уравнение все остальные факторы и найти «Cp». Делать это нужно так:

    • Исходное уравнение: Cp = Q/mΔT
    • c = 34 700 Дж/(350 г x 151 ºC)
  4. 4

    Найдите ответ. Теперь, после того как вы подставили известные величины в выражение, вам осталось выполнить несколько простейших арифметических действий, чтобы узнать ответ. Удельная теплоемкость — окончательный ответ — составляет 0,65657521286 Дж/(г x ºC).

    • Cp = 34,700 Дж/(350 г x 151 ºC)
    • Cp = 34,700 Дж/(52850 г x ºC)
    • Cp = 0,65657521286 Дж/(г x ºC)

Советы

  • Металл нагревается быстрее воды из-за низкой удельной теплоемкости.
  • При нахождении удельной теплоемкости сокращайте единицы измерения тогда, когда это возможно.
  • Удельную теплоемкость многих материалов можно найти в интернете для проверки вашего ответа.
  • Иногда для изучения процессе теплопередачи в процессе физических или химических превращений может использоваться калориметр.
  • Изменение температуры при прочих равных условиях значительнее для материалов с низкой удельной теплоемкостью.
  • Системная единица СИ (Международная система единиц измерения) удельной теплоемкости — джоуль на градус Цельсия на грамм. В странах с британской системой мер она измеряется в калориях на градус Фаренгейта на фунт.
  • Изучите формулу расчета удельной теплоемкости пищевых продуктов Cp = 4,180 x w + 1,711 x p + 1,928 x f + 1,547 x c + 0,908 x a — это уравнение для нахождения удельной теплоемкости, где «w» — процентное содержание воды в продукте, «p» — процентное содержание белков, «f» — процентное содержание жиров, «c» — процентное содержание углеводов и «a» — процентное содержание неорганических компонентов. Уравнение учитывает массовую долю (x) всех твердых веществ, которые составляют пищу. Расчет удельной теплоемкости приведен в кДж/(кг х K).

Об этой статье

Эту страницу просматривали 91 794 раза.

Была ли эта статья полезной?

Источник

Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.

Пример:

Для нагревания (1) кг воды на (1 )°С требуется количество теплоты, равное (4200) Дж. А если нагревать (1) кг цинка на (1) °С, то потребуется всего (400) Дж. 

Физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой (1) кг для того, чтобы его температура изменилась на (1) °С, называется удельной теплоёмкостью вещества.

Обрати внимание!

Удельная теплоёмкость обозначается буквой (с) и измеряется в Дж/(кг·°С).

Пример:

Удельная теплоёмкость серебра равна (240) Дж/(кг·°С). Это означает, что для нагревания серебра массой (1) кг на (1) °С необходимо количество теплоты, равное (240) Дж.

При охлаждении серебра массой (1) кг на (1) °С выделится количество теплоты, равное (240) Дж.

Это означает, что если меняется температура серебра массой (1) кг на (1) °С, то оно или поглощает, или выделяет количество теплоты, равное (240) Дж.

Таблица 1. Удельная теплоёмкость некоторых веществ.

Твёрдые вещества

Вещество

(c),

Дж/(кг·°С)

Алюминий

(920)

Бетон

(880)

Дерево

(2700)

Железо,

сталь

(460)

Золото

(130)

Кирпич

(750)

Латунь

(380)

Лёд

(2100)

Медь

(380)

Нафталин

(1300)

Олово

(230)

Парафин

(3200)

Песок

(970)

Платина

(130)

Свинец

(120)

Серебро

(240)

Стекло

(840)

Цемент

(800)

Цинк

(400)

Чугун

(550)

Сера

(710)

Жидкости

Вещество

(c),

Дж/(кг·°C)

Вода

(4200)

Глицерин

(2400)

Железо

(830)

Керосин

(2140)

Масло

подсолнечное

(1700)

Масло

трансформаторное

(2000)

Ртуть

(120)

Спирт

этиловый

(2400)

Эфир

серный

(2300)

Газы (при постоянном давлении и температуре (20) °С)

Вещество

(c),

Дж/(кг·°C)

Азот

(1000)

Аммиак

(2100)

Водород

(14300)

Водяной

пар

(2200)

Воздух

(1000)

Гелий

(5200)

Кислород

(920)

Углекислый

газ

(830)

Удельная теплоемкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоемкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоемкости газов от температуры необходимо учитывать, поскольку она очень существенна.

Обрати внимание!

Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.

Пример:

Вода в жидком состоянии имеет удельную теплоёмкость, равную (4200) Дж/(кг·°С), в твёрдом состоянии (лёд) — (2100) Дж/(кг·°С), в газообразном состоянии (водяной пар) — (2200) Дж/(кг·°С).

Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от (0) °С до (37) °С и снова растёт при дальнейшем нагревании.

В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно.

Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках) и др.

Именно благодаря высокой удельной теплоёмкости вода является одним из лучших средств для борьбы с огнём. Соприкасаясь с пламенем, она моментально превращается в пар, отнимая большое количество теплоты у горящего предмета.

Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.

Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.

Источники:

Пёрышкин А.В. Физика, 8 кл.: учебник. — М.: Дрофа, 2013. — 237 с.

www.infourok.ru

www.puzzleit.ru

www.libma.ru

www.englishhelponline.files.wordpress.com

www.avd16.ru

Источник

Решение задач дело полезное, но не всегда интересное. Чтобы вы справлялись с решением задач по теме «Теплоемкость идеального газа» быстрее, приведем здесь несколько примеров и вопросов с объяснениями.

Подписывайтесь на наш телеграм-канал, чтобы получать полезную и интересную рассылку. 

Задачи по теме «Теплоемкость идеального газа» с решениями

Повторение и практика – залог успеха в любом деле. И решение задач не исключение. Поэтому не забываем держать под рукой памятку по задачам и полезные формулы

Задача №1. Определить удельную теплоемкость идеального газа

Условие

Определить молярную массу M двухатомного газа и его удельные теплоемкости, если известно, что разность cр – cv удельных теплоемкостей этого газа равна 260 Дж/(кг*К)

Решение

По определению:

Как найти удельную теплоемкость сосуда
Значит, газ из задачи – кислород. Если кто не понял, как это определяется, учитесь пользоваться таблицей Менделеева.

Считаем удельные теплоемкости:

Как найти удельную теплоемкость сосуда

Ответ: 32 г/моль; 649 Дж/кг*К; 909 Дж/кг*К.

Задача №2. Удельная теплоемкость

Условие

Плотность некоторого газа при нормальных условиях ρ = 1,25 кг/м3. Отношение удельных теплоемкостей γ = 1,4. Определить удельные теплоемкости cv и сp этого газа.

Решение

Исходя из отношения удельных теплоемкостей, можно сделать вывод, что газ – двухатомный, i=5. При постоянном объеме удельная теплоемкость равна:

Молярную массу можно найти из уравнения Клапейрона-Менделеева:

Отсюда:

Как найти удельную теплоемкость сосуда

Ответ: 742 Дж/кг*К; 1039 Дж/кг*К.

Задача №3. Молярная теплоемкость

Условие

Вычислить молярные теплоемкости газа, зная, что его молярная масса М = 4∙10 3 кг/моль и отношение удельных теплоемкостей ср/сv = 1,67.

Решение

Удельные теплоемкости равны:

Можно найти:

Как найти удельную теплоемкость сосуда

Ответ: 12,4 Дж/моль*К; 20,71 Дж/моль*К

Задача №4. Теплоемкость при изопроцессах

Условие

На рисунке изображен изотермический процесс с газом постоянной массы. Сравните теплоемкость в процессе АВ с теплоемкостью этой же массы газа в изохорном процессе.

Как найти удельную теплоемкость сосуда

Решение

Теплоемкость при изохорном процессе является постоянной величиной. При изотермическом процесса она равна бесконечности. Значит, теплоемкость в процессе АВ больше.

Ответ: Теплоемкость в процессе АВ больше.

Задача №5. Теплоемкость при политропическом процессе

Условие

Найдите молярную теплоемкость идеального газа при политропическом процессе pVn = const, если показатель адиабаты газа равен γ. При каких значениях показателя политропы n теплоемкость газа будет отрицательной?

Решение

Запишем первое начало термодинамики, выражения для работы и изменения внутренней энергии в политропическом процессе соответственно:

Как найти удельную теплоемкость сосуда

Если количество вещества и изменение температуры принять равными единице, это выражение будет равно молярной теплоемкости (по определению теплоемкости):

Ответ: см. выражение выше.

Вопросы по теме «Теплоемкость идеального газа»

Вопрос 1. Что такое теплоемкость идеального газа?

Ответ. Когда газу сообщается определенное количество теплоты, меняется его температура.

Отношение количества теплоты, сообщенного газу, к изменению его температуры, называется теплоемкостью идеального газа.

Вопрос 2. Что такое молярная и удельная теплоемкость идеального газа?

Ответ. Молярная и удельная теплоемкости активно используются в термодинамике. Молярная теплоемкость – это теплоемкость одного моля вещества. 

Удельная теплоемкость – теплоемкость единичной массы вещества.

Вопрос 3. Как определяется теплоемкость газа при изопроцессах?

Ответ. 

При изотермическом процессе T=const. Теплоемкость равна плюс/минус бесконечности.
При адиабатном процессе нет теплообмена с окружающей средой, теплоемкость равна нулю.
При изохорном процессе газ не совершает работы, а теплоемкость равна:

Здесь i – количество степеней свободы молекул газа. Для одноатомных газов i=3, для двухатомных i=5.

При изобарном процессе теплоемкость определяется соотношением Мейера:

Вопрос 4. Как еще связаны теплоемкости при постоянном давлении и постоянном объеме?

Ответ. Отношение теплоемкостей при постоянном давлении и постоянном объеме обозначается греческой буквой «гамма» и называется показателем адиабаты. 

Вопрос 5. Как называются процессы, в которых теплоемкость газа остается неизменной?

Ответ. Такие процессы называются политропными. Адиабатный процесс – частный случай политропного процесса.

Теплоемкость реального газа не равна теплоемкости идеального газа и может сильно отличаться.

Нужна помощь в решении задач и выполнении других заданий? Специальный студенческий сервис готов оказать ее!

Источник