Как найти высоту цилиндрического сосуда
Решение №1
- Давайте посчитаем объём жидкости в первом сосуде: (V = pi r^2 times 16)
- Посчитаем тот же объём во втором сосуде, предположив, что там вода поднялась на h: (V=pi left(2rright)^2times h=4pi r^2times h)
- Так как переливали один и тот же объём воды, объёмы, вычисленные выше в обоих сосудах, равны. То есть:
(begin{eqnarray} pi r^2times 16 &=& 4pi r^2times h \ 16 &=& 4h \ h &=& 4 end{eqnarray})
Таким образом, высота воды во втором сосуде равна 4 см.
Решение №2
Объем цилиндрического сосуда выражается через его диаметр и высоту как:
(V=Hfrac{pi d^2}{4})
При увеличении диаметра сосуда в 2 раза высота равного объёма жидкости уменьшится в 4 раза и станет равна 4.
Ответ: 4
ЕГЭ-Центр «Пять с плюсом» основан в 2008 году. С основания и по настоящий момент Центр возглавляет Елизавета Владимировна Глазова, мать пятерых детей, профессиональный педагог и преподаватель русского языка и литературы.
Запрос успешно отправлен. В ближайшее время расширенный доступ будет предоставлен.
– Oбразование как Стиль Жизни
Присылайте свои колонки
и предложения
У вас есть интересная новость
или материал из сферы образования
или популярной науки?
Расскажите нам!
© 2014-2020 Newtonew. 12+
Просветительский медиа-проект об образовании,
посвящённый самым актуальным и полезным
концепциям, теориям и методикам, технологиям
и исследованиям, продуктам и сервисам. Мы
говорим о том, как развиваются и изменяются
образование и наука.
Копирование материалов возможно только
с разрешения редакции Newtonew.
Мы используем файлы cookie для улучшения пользовательского опыта. Подробнее вы можете посмотреть в нашем пользовательском соглашении.
Авторизация на сайте
Вход через соц.сети:
Напомнить пароль
Введите email, на который вы зарегистрированы:
назад
Пароль выслан
Мы выслали ваш пароль для входа в систему на указанный email.
Не забывайте о том, что вы можете авторизоваться в системе через социальные сети. Если при регистрации в соц.сетях вы указывали тот же email что и на нашем сайте, то после авторизации вы попадете в свой профиль.
Вход через соц.сети:
Подтвердите регистрацию
На указанный e-mail было отправлено письмо со ссылкой. Пожалуйста, перейдите по ссылке для подтверждения.
Вход через соц.сети:
Регистрация подтверждена
Вы успешно зарегистрировались
Источник
Задача 1-1. Определить полное гидростатическое давление на дно сосуда, наполненного водой. Сосуд сверху открыт, давление на свободной поверхности атмосферное. Глубина воды в сосуде h =0,60 м.
Расчет выполнить: 1) в системе МКГСС, 2) в международной системе единиц (СИ), 3) во внесистемных механических единицах.
Скачать решение задачи 1.1 (Решебник 4)
Задача 1-3. Определить высоту столба воды в пьезометре над уровнем жидкости в закрытом сосуде. Вода в сосуде находится под абсолютным давлением Р1 = 1,06 ат (рис. 1-10),
Скачать решение задачи 1.3 (Решебник 4)
Задача 1-5. Определить высоту, на которую поднимается вода в вакуумметре, если абсолютное давление воздуха внутри баллона Рн=0,95 ат (рис. 1-11). Сформулировать, какое давление измеряет вакуумметр.
Скачать решение задачи 1.5 (Решебник 4)
Задача 1-9. Определить манометрическое давление в точке А трубопровода, если высота столба ртути по пьезометру h2=25см Центр трубопровода расположен на h1 = 40 см ниже линии раздела между водой и ртутью (рис. 1-13).
Скачать решение задачи 1.9 (Решебник 4)
Задача 1-13. В цилиндрический сосуд при закрытом кране В и открытом кране Л наливается ртуть при атмосферном давлении до высоты h1 = 50 см. Высота сосуда Н = 70см. Затем кран А закрывается, а кран В открывается. Ртуть начинает вытекать из сосуда в атмосферу. Предполагая, что процесс происходит изотермически, определить вакуум в сосуде при «овом положе-нии уровня h2 в момент равновесия (рис, 1-16) и величину h2.
Скачать решение задачи 1.13 (Решебник 4)
Задача 1.16 Определить при помощи дифференциального манометра разность давлений в точках В и А двух трубопроводов, заполненных водой. Высота столба ртути =20 см. Удельный вес ртути 133416 Н/м3 13600 кг/м3, воды 9810 Н/м3.
Скачать решение задачи 1.16 (Решебник 4)
Задача 1-18. Определить при помощи дифференциального манометра разность давлений в точках В и А двух трубопроводов, заполненных водой. Высота столба ртути h1-h2=h = 20 см. Удельный вес ртути – 133416 н/м3 = 13600 кГ/м3, воды – 9810 н/м3 (рис. 1-19).
Скачать решение задачи 1.18 (Решебник 4)
Задача 1-25. Глубина воды в цилиндрическом сосуде диаметром D = 60 см равна hн = 80 см. Определить .полное гидростатическое давление при вращении сосуда (n = 90 об/мин) для точек а, b, с и d., отстоящих на расстоянии z =40 см от дна сосуда (рис. 1-22) и расположенных на окружности с радиусом соответственно r1 = 0, r2= 10 см, r3 =20 см и r4=r0 = 30 см.
Скачать решение задачи 1.25 (Решебник 4)
Задача 1-28. Построить поверхности равного давления (рис. 1-23) P’=Pат=98100 Н/м3=1 кГ/см2, Р’ = 100062 Н/м3 = 1,02 кГ/см2, Р’= 102024 Н/м3=1,04 кГ/см2, Р’=103986Н/м2=1,06 кГ/см2 в вертикальной плоскости, проведенной по диаметру цилиндрического сосуда, который наполнен водой и вращается с постоянной угловой скоростью w=8,1 1/сек. Вычислить координаты этих поверхностей для вертикалей, проведенных через точки, расположенные на окружности радиуса соответственно r1 = 10 см, r2 = 20 см и r3=30 см. Известно, что при вращении наинизшая точка свободной поверхности расположена на расстоянии rо=0,6 м. Диаметр сосуда d =0,6 м. Сосуд сверху открыт. Проверить величину давления в точке А (r2=20 см, z=zА = 53,36 см).
Скачать решение задачи 1.28 (Решебник 4)
Задача 1-31. Определить силу манометрического давления на дно сосудов а, б, в и г (рис. 1-24), наполненных водой. Высота столба h= 60 см, а h1=50 см и h2 = 40 см. Площадь дна сосудов w = 1250 см2, а площадь сечения w1= 12,50 см2. Найти силу, передаваемую в каждом случае на пол, пренебрегая весом сосуда. Почему сила давления на дно не всегда совпадает с весом воды, заключенной ,в сосуде? Объясните гидростатический парадокс, определив силу •манометрического давления, воспринимаемую фасонной частью АВСD (б) или АВ (схемы в и г).
Скачать решение задачи 1.31 (Решебник 4)
Задача 1-33. Определить силу манометрического давления иа дно сосуда, если сила P1, действующая на поршень, равна 44 H (рис. 1-26). Диаметр d=12 см, глубина воды в сосуде h=40 см, диаметр дна сосуда D=35 см.
Скачать решение задачи 1.33 (Решебник 4)
Задача 1-42. Определить силу давления воды, приходящуюся н« 1 л ширины плоского затвора и центр давления. Дано: h1=5м, h2=1,2 м, h=3 м. Угол наклона затвора к горизонту а=45°. Давление на свободную поверхность с обеих сторон затвора атмосферное (рис. 1-36),
Скачать решение задачи 1.42 (Решебник 4)
Задача 1-43. Глубина воды перед вертикальным затвором h=6 м (рис. 1-37). Требуется расположить четыре горизонтальных ригеля (двутавровые балки) так, чтобы на каждый ригель приходилась одинаковая сила давления воды Pi которая передается на ригели через обшивку плоского затвора. Расчет произвести на I м ширины затвора. Задачу решить графо-аналитическим способом, а расстояние, измеренное по чертежу, от свободной поверхности до каждого ригеля проверить аналитически по формуле (1-11).
Скачать решение задачи 1.43 (Решебник 4)
Задача 1-45. Найти силу Т, с которой .нужно тянуть трос, прикрепленный к нижней кромке плоского круглого затвора диаметром d=2 м, закрывающего отверстие трубы. Затвор может вращаться вокруг шарнира A. Глубина воды над верхней кромкой затвора h=3 м (.рис. 1-39). Трос направлен под углом 45° к горизонту.
Скачать решение задачи 1.45 (Решебник 4)
Задача 1-47. Прямоугольный плоский затвор шириной b = 2 м вверху поддерживается крюками, а внизу соединен шарнирно по горизонтальной оси с дном сооружения. В верхнем бьефе глубина воды h1=3 м, а=0,5 м (рис. 1-41). Определить реакцию в шарнире Ra и реакции крюков Rb от давления жидкости в двух случаях: 1) в нижнем бьефе воды нет; 2) глубина воды в нижнем бьефе равна 1,5 м.
Скачать решение задачи 1.47 (Решебник 4)
Задача 1-68. Прямоугольный канал шириной b=7 м перекрывается сегментным затвором. Глубина воды в канале перед затвором А, =4,80 м, в нижнем бьефе hи=2 м. Радиус затвора r=7,5 м. Ось вращения затвора расположена на h = 1 л выше горизонта воды перед затвором (рис. 1-55). Определить: 1) Силу давления воды на затвор слева и координаты ее центра давления. Проверить вычисленные координаты графически. 2) Силу давления воды на затвор справа и координаты ее центра давления. Проверить вычисленные координаты графически. 3) Равнодействующую силу давления воды на затвор и координаты ее центра давления. 4) Подъемное усилие Т, предполагая, что вес затвора G приложен в середине пролета на биссектрисе угла а на расстоянии 0,75- от оси вращения О-О’. При расчете трением в шарнире пренебречь. Вес затвора определить по формуле А. Р. Береэинского
Скачать решение задачи 1.68 (Решебник 4)
Задача 1-69. Определить силу манометрического давления воды на цилиндрический затвор, перегораживающий прямоугольный канал, и центр давления, если глубина перед затвором h1 = 4,2 м, диаметр затвора d=3м, а ширина пролета b=10 м. Воды в нижнем бьефе.
Скачать решение задачи 1.69 (Решебник 4)
Задача 1-70. Цилиндрический затвор может вращаться вокруг горизонтальной оси (рис. 1-58). Центр тяжести затвора находится на радиусе, расположенном под углом ф=45° « горизонту, и удален от оси вращения на ОА =1/5r. Радиус затвора r=40 см, ширина b=100 см. Глубина воды h. Определить Необходимый вес затвора, чтобы затвор находился в равновесии и занимал положение, указанное на рис. 1-58.
Скачать решение задачи 1.70 (Решебник 4)
Задача 1-86. Определить величину сжимающего усилия Р2. производимого одним рабочим у гидравлического пресса, если большое плечо рычага имеет длину a=1 м, а малое b=0,1 м, диаметр поршня пресса D=250 мм, диаметр поршня насоса d=25 мм, усилие одного рабочего Р=147H= 15 кГ. Коэффициент полезного действия 0,85 (рис. 1-71).
Скачать решение задачи 1.86 (Решебник 4)
Задача 1-88. Определить давление, создаваемое гидравлическим грузовым аккумулятором (рис. 1-72) и запасаемую им энергию при следующих данных: вес движущихся частей G=725940 H=74000 кГ, диаметр плунжера d=20 см, площадь поперечного сечения плунжера w=314см2, ход плунжера H=6 м. Коэффициент полезного действия аккумулятора 0,85.
Скачать решение задачи 1.88 (Решебник 4)
Задача 1-93, Определить вес поплавка диаметром D=20 см, который при слое бензина H=>80 см обеспечивал бы автоматическое открытие клапана диаметром d=4 см (рис. 1-76). Длина тяги h =74 см. Вес клапана и тяги принять 1,7 H=0,173 кГ. Относительный удельный вес бензина 0,75.
Скачать решение задачи 1.93 (Решебник 4)
Задача 1-104. Проверить остойчивость плавания на воде совершенно одинаковых по своим размерам брусьев квадратного поперечного сечения, выполненных из однородных материалов со следующими относительными удельными весами: 1) дуб (т) =0,9, 2) бук (т) =0,80, 3) береза (т)=0,75, 4) соcна (т)=0,50, 5) пробковое дерево (т)=0,25, 6) особо легкий материал (n)=0,125.
Скачать решение задачи 1.104 (Решебник 4)
Задача 1-105. Определить остойчивость треугольной равнобедренной призмы, имеющей следующие размеры: ширина поверху b=1,40 м. Длина l=5 м. Угол при вершине а=60°. Относительный удельный вес призмы 0,75 (рис. 1-79).
Скачать решение задачи 1.105 (Решебник 4)
Задача 1-106. Определить остойчивость металлической баржи (рис. 1-80) в порожнем и груженом состоянии. После загрузки возвышение ее борта над водой 0,5 м. Ширина баржи b=8 м, клипа l=60 м, высота h=3,50 м, толщина стенок =0,01 м, груз – мокрый песок (относительный удельный вес 2,0). Относительный удельный вес железа 7,8. Для упрощения расчета принять, что 1) баржа имеет прямоугольное очертание, 2) вес переборок и других конструктивных частей баржи условно отнесен к весу ее стенок.
Скачать решение задачи 1.106 (Решебник 4)
Задача 2.10 Горизонтальное сопло запроектировано таким образом, что скорость воды вдоль осевой линии изменяется по линейному закону от «1=2 м/сек до u1=20 м/сек на длине 40 см (рис. 2-9,а). Определить разность давлений, соответствующую этому изменению скорости, пренебрегая потерями на трение. Вычислить величину градиента давления в начальном сечении и в конечном, отстоящем от него на 40 см. Построить эпюру изменения пьезометр метрического напора z+P/y – по оси сопла, считая, что давление в конечном сечении равно атмосферному.
Скачать решение задачи 2.10 (Решебник 4)
Задача 2-32. Определить глубину Воды hг во входной части сооружения прямоугольного сечения и ширину bг (рис. 2-17), чтобы отношение площади живого сечения после сужения к площади живого сечения в канале составляло 0,4. Расчетный расход Q= 10 ч3/сек. Канал трапецеидального сечения с коэффициентом заложения откоса m=ctdO=1,5 и шириной по дну b1 = 6 м. Глубина воды в канале h1 = 1,5 м. высота порога при входе Р=0,3 м. Построить линию удельной энергии и показать пьезометрическую линию.
Скачать решение задачи 2.32 (Решебник 4)
Задача 2-34. Вода при температуре t=12° С подается по трубе диаметром d=4 см. Расход воды Q=70 см3/сек. Определить режимы потока и описать характер движения струйки краски, введенной в центре поперечного сечения трубы. Какой расход нужно пропускать по трубе, чтобы изменить режим движения?
Скачать решение задачи 2.34 (Решебник 4)
Задача 2-40. Вычислить коэффициент Кориолиса при ламинарном движении и выразить среднюю скорость v через максимальную umax при условии, что скорость в открытом прямоугольном лотке глубиной h (рис. 2-19) и шириной b изменяется от нуля у дна до максимальной на поверхности по уравнению параболы
Скачать решение задачи 2.40 (Решебник 4)
Задача 2-43. Определить потери напора в водопроводе длиной l=500 м при подаче Q=100 л/сек, если трубы чугунные, бывшие в эксплуатации, d=250 мм и шероховатость 1,35 мм. Температура воды t=10 С
Скачать решение задачи 2.43 (Решебник 4)
Задача 2-45. Определить, какой расход можно перекачать сифоном из водоема А в водоем В при разности горизонтов H = 1,5 м (рис. 2-20), если длина сифона l=75 м, а диаметр сифона d=200 мм. Трубы чугунные, нормальные (шероховатость 1,35 мм). Вычислениями выяснить, будет ли в сечениях 1-1, 2-2, 3-3, 4-4, 5-5 манометрическое давление или вакуум? Найти, где расположены сечения, в которых давление в сифоне будет равно атмосферному. Почему в сечении 3-3 будет наибольший вакуум? При расчете скоростными напорами в водоемах пренебречь. Наибольшее превышение над уровнем воды в водоеме л принять s=2 м, а глубины погружения h1 = 2 л и h2=1 м. Температура воды t=15°С.
Скачать решение задачи 2.45 (Решебник 4)
Источник
Задача по физике – 6849
С противоположных сторон широкого вертикального сосуда, наполненного водой, открыли два одинаковых отверстия, каждое площадью $S = 0,50 см^{2}$. Расстояние между ними по высоте $Delta h = 51 см$. Найти результирующую силу реакции вытекающей воды.
Подробнее
Задача по физике – 6850
В боковой стенке широкого цилиндрического вертикального сосуда высоты $h = 75 см$ сделана узкая вертикальная щель; нижний конец которой упирается в дно сосуда. Длина щели $l = 50 см$, ширина $b = 1,0 мм$. Закрыв щель, сосуд наполнили водой. Найти результирующую силу реакции вытекающей воды непосредственно после того, как щель открыли.
Подробнее
Задача по физике – 6851
Вода вытекает из большого бака по изогнутой под прямым углом трубке, внутренний радиус которой $r = 0,50 см$ (рис.). Длина горизонтальной части трубки $l = 22 см$. Расход воды $Q = 0,50 л/с$. Найти момент сил реакции воды на стенки этой трубки относительно точки О, обусловленный течением воды.
Подробнее
Задача по физике – 6852
В боковой стенке широкого открытого бака вмонтирована суживающаяся трубка (рис.), через которую вытекает вода. Площадь сечения трубки уменьшается от $S = 3,0 см^{2}$ до $s = 1,0 см^{2}$. Уровень воды в баке на $h = 4,6 м$ выше уровня в трубке. Пренебрегая вязкостью воды, найти горизонтальную составляющую силы, вырывающей трубку из бака.
Подробнее
Задача по физике – 6853
Цилиндрический сосуд с водой вращают вокруг его вертикальной оси с постоянной угловой скоростью $omega$. Найти:
а) форму свободной поверхности воды;
б) распределение давления воды на дне сосуда вдоль его радиуса, если давление в центре дна равно $p_{0}$.
Подробнее
Задача по физике – 6854
Тонкий горизонтальный диск радиуса $R = 10 см$ расположен в цилиндрической полости с маслом, вязкость которого $eta = 0,08 П$ (рис.). Зазоры между диском и горизонтальными торцами полости одинаковы и равны $h = 1,0 мм$. Найти мощность, которую развивают силы вязкости, действующие на диск, при вращении его с угловой скоростью $omega = 60 рад/с$. Краевыми эффектами пренебречь
Подробнее
Задача по физике – 6855
Длинный цилиндр радиуса $R_{1}$ перемещают вдоль его оси с постоянной скоростью $v_{0}$ внутри коаксиального с ним неподт вижного цилиндра радиуса $R_{2}$. Пространство между цилиндрами заполнено вязкой жидкостью. Найти скорость жидкости в зависимости от расстояния $r$ до оси цилиндров. Течение ламинарное.
Подробнее
Задача по физике – 6856
Жидкость с вязкостью $eta$ находится между двумя длинными коаксиальными цилиндрами с радиусами $R_{1}$ и $R_{2}$, причем $R_{1} а) угловую скорость вращающейся жидкости в зависимости от радиуса $r$.
б) момент сил трения, действующих на единицу длины внешнего цилиндра.
Подробнее
Задача по физике – 6857
По трубке длины $l$ и радиуса $R$ течет стационарный поток жидкости, плотность которой $rho$ и вязкость $eta$. Скорость течения жидкости зависит от расстояния $r$ до оси трубки по закону $v = v_{0} (1 – r^{2}/R^{2})$. Найти:
а) объем жидкости, протекающей через сечение трубки в единицу времени;
б) кинетическую энергию жидкости в объеме трубки;
в) силу трения, которую испытывает трубка со стороны жидкости;
г) разность давлений на концах трубки.
Подробнее
Задача по физике – 6858
В системе (рис.) из широкого сосуда А по трубке вытекает вязкая жидкость, плотность которой $rho = 1,0 г/см^{3}$. Найти скорость вытекающей жидкости, если $h_{1} = 10 см, h_{2} = 20 см$ и $h_{3} = 35 см$. Расстояния $l$ одинаковы.
Подробнее
Задача по физике – 6859
Радиус сечения трубопровода монотонно уменьшается по закону $r = r_{0} e^{ – alpha x}$, где $alpha = 0,50 м^{-1}$, $x$ — расстояние от начала трубопровода. Найти отношение чисел Рейнольдса в сечениях, отстоящих друг от друга иа $Delta x = 3,2 м$.
Подробнее
Задача по физике – 6860
При движении шарика радиуса $r_{1} = 1,2 мм$ в глицерине ламинарное обтекание наблюдается при скорости шарика, не превышающей $v_{1} = 23 см/с$. При какой минимальной скорости $v_{2}$ шара радиуса $r_{1} = 5,5 см$ в воде обтекание станет турбулентным? Вязкости глицерина и воды равны соответственно $eta_{1} = 13,9 П$ и $eta_{2} = 0,011 П$.
Подробнее
Задача по физике – 6861
Свинцовый шарик равномерно опускается в глицерине, вязкость которого $eta = 13,9 П$. При каком наибольшем диаметре шарика его обтекание еще остается ламинарным? Известно, что переход к турбулентному обтеканию соответствует числу $Re = 0,5$ (это значение числа $Re$, при котором за характерный размер взят диаметр шарика).
Подробнее
Задача по физике – 6862
Стальной шарик диаметра $d = 3,0 мм$ опускается с нулевой начальной скоростью в прованском масле, вязкость которого $eta = 0,90 П$. Через сколько времени после начала движения скорость шарика будет отличаться от установившегося значения на $n = 1,0$%?
Подробнее
Задача по физике – 6863
Стержень движется в продольном направлении с постоянной скоростью $v$ относительно инерциальной K-системы отсчета. При каком значении и длина стержня в этой системе отсчета будет на $eta = 0,5$% меньше его собственной длины?
Подробнее
Источник