Как найти высоту сосуда
Задача 1-1. Определить полное гидростатическое давление на дно сосуда, наполненного водой. Сосуд сверху открыт, давление на свободной поверхности атмосферное. Глубина воды в сосуде h =0,60 м.
Расчет выполнить: 1) в системе МКГСС, 2) в международной системе единиц (СИ), 3) во внесистемных механических единицах.
Скачать решение задачи 1.1 (Решебник 4)
Задача 1-3. Определить высоту столба воды в пьезометре над уровнем жидкости в закрытом сосуде. Вода в сосуде находится под абсолютным давлением Р1 = 1,06 ат (рис. 1-10),
Скачать решение задачи 1.3 (Решебник 4)
Задача 1-5. Определить высоту, на которую поднимается вода в вакуумметре, если абсолютное давление воздуха внутри баллона Рн=0,95 ат (рис. 1-11). Сформулировать, какое давление измеряет вакуумметр.
Скачать решение задачи 1.5 (Решебник 4)
Задача 1-9. Определить манометрическое давление в точке А трубопровода, если высота столба ртути по пьезометру h2=25см Центр трубопровода расположен на h1 = 40 см ниже линии раздела между водой и ртутью (рис. 1-13).
Скачать решение задачи 1.9 (Решебник 4)
Задача 1-13. В цилиндрический сосуд при закрытом кране В и открытом кране Л наливается ртуть при атмосферном давлении до высоты h1 = 50 см. Высота сосуда Н = 70см. Затем кран А закрывается, а кран В открывается. Ртуть начинает вытекать из сосуда в атмосферу. Предполагая, что процесс происходит изотермически, определить вакуум в сосуде при «овом положе-нии уровня h2 в момент равновесия (рис, 1-16) и величину h2.
Скачать решение задачи 1.13 (Решебник 4)
Задача 1.16 Определить при помощи дифференциального манометра разность давлений в точках В и А двух трубопроводов, заполненных водой. Высота столба ртути =20 см. Удельный вес ртути 133416 Н/м3 13600 кг/м3, воды 9810 Н/м3.
Скачать решение задачи 1.16 (Решебник 4)
Задача 1-18. Определить при помощи дифференциального манометра разность давлений в точках В и А двух трубопроводов, заполненных водой. Высота столба ртути h1-h2=h = 20 см. Удельный вес ртути – 133416 н/м3 = 13600 кГ/м3, воды – 9810 н/м3 (рис. 1-19).
Скачать решение задачи 1.18 (Решебник 4)
Задача 1-25. Глубина воды в цилиндрическом сосуде диаметром D = 60 см равна hн = 80 см. Определить .полное гидростатическое давление при вращении сосуда (n = 90 об/мин) для точек а, b, с и d., отстоящих на расстоянии z =40 см от дна сосуда (рис. 1-22) и расположенных на окружности с радиусом соответственно r1 = 0, r2= 10 см, r3 =20 см и r4=r0 = 30 см.
Скачать решение задачи 1.25 (Решебник 4)
Задача 1-28. Построить поверхности равного давления (рис. 1-23) P’=Pат=98100 Н/м3=1 кГ/см2, Р’ = 100062 Н/м3 = 1,02 кГ/см2, Р’= 102024 Н/м3=1,04 кГ/см2, Р’=103986Н/м2=1,06 кГ/см2 в вертикальной плоскости, проведенной по диаметру цилиндрического сосуда, который наполнен водой и вращается с постоянной угловой скоростью w=8,1 1/сек. Вычислить координаты этих поверхностей для вертикалей, проведенных через точки, расположенные на окружности радиуса соответственно r1 = 10 см, r2 = 20 см и r3=30 см. Известно, что при вращении наинизшая точка свободной поверхности расположена на расстоянии rо=0,6 м. Диаметр сосуда d =0,6 м. Сосуд сверху открыт. Проверить величину давления в точке А (r2=20 см, z=zА = 53,36 см).
Скачать решение задачи 1.28 (Решебник 4)
Задача 1-31. Определить силу манометрического давления на дно сосудов а, б, в и г (рис. 1-24), наполненных водой. Высота столба h= 60 см, а h1=50 см и h2 = 40 см. Площадь дна сосудов w = 1250 см2, а площадь сечения w1= 12,50 см2. Найти силу, передаваемую в каждом случае на пол, пренебрегая весом сосуда. Почему сила давления на дно не всегда совпадает с весом воды, заключенной ,в сосуде? Объясните гидростатический парадокс, определив силу •манометрического давления, воспринимаемую фасонной частью АВСD (б) или АВ (схемы в и г).
Скачать решение задачи 1.31 (Решебник 4)
Задача 1-33. Определить силу манометрического давления иа дно сосуда, если сила P1, действующая на поршень, равна 44 H (рис. 1-26). Диаметр d=12 см, глубина воды в сосуде h=40 см, диаметр дна сосуда D=35 см.
Скачать решение задачи 1.33 (Решебник 4)
Задача 1-42. Определить силу давления воды, приходящуюся н« 1 л ширины плоского затвора и центр давления. Дано: h1=5м, h2=1,2 м, h=3 м. Угол наклона затвора к горизонту а=45°. Давление на свободную поверхность с обеих сторон затвора атмосферное (рис. 1-36),
Скачать решение задачи 1.42 (Решебник 4)
Задача 1-43. Глубина воды перед вертикальным затвором h=6 м (рис. 1-37). Требуется расположить четыре горизонтальных ригеля (двутавровые балки) так, чтобы на каждый ригель приходилась одинаковая сила давления воды Pi которая передается на ригели через обшивку плоского затвора. Расчет произвести на I м ширины затвора. Задачу решить графо-аналитическим способом, а расстояние, измеренное по чертежу, от свободной поверхности до каждого ригеля проверить аналитически по формуле (1-11).
Скачать решение задачи 1.43 (Решебник 4)
Задача 1-45. Найти силу Т, с которой .нужно тянуть трос, прикрепленный к нижней кромке плоского круглого затвора диаметром d=2 м, закрывающего отверстие трубы. Затвор может вращаться вокруг шарнира A. Глубина воды над верхней кромкой затвора h=3 м (.рис. 1-39). Трос направлен под углом 45° к горизонту.
Скачать решение задачи 1.45 (Решебник 4)
Задача 1-47. Прямоугольный плоский затвор шириной b = 2 м вверху поддерживается крюками, а внизу соединен шарнирно по горизонтальной оси с дном сооружения. В верхнем бьефе глубина воды h1=3 м, а=0,5 м (рис. 1-41). Определить реакцию в шарнире Ra и реакции крюков Rb от давления жидкости в двух случаях: 1) в нижнем бьефе воды нет; 2) глубина воды в нижнем бьефе равна 1,5 м.
Скачать решение задачи 1.47 (Решебник 4)
Задача 1-68. Прямоугольный канал шириной b=7 м перекрывается сегментным затвором. Глубина воды в канале перед затвором А, =4,80 м, в нижнем бьефе hи=2 м. Радиус затвора r=7,5 м. Ось вращения затвора расположена на h = 1 л выше горизонта воды перед затвором (рис. 1-55). Определить: 1) Силу давления воды на затвор слева и координаты ее центра давления. Проверить вычисленные координаты графически. 2) Силу давления воды на затвор справа и координаты ее центра давления. Проверить вычисленные координаты графически. 3) Равнодействующую силу давления воды на затвор и координаты ее центра давления. 4) Подъемное усилие Т, предполагая, что вес затвора G приложен в середине пролета на биссектрисе угла а на расстоянии 0,75- от оси вращения О-О’. При расчете трением в шарнире пренебречь. Вес затвора определить по формуле А. Р. Береэинского
Скачать решение задачи 1.68 (Решебник 4)
Задача 1-69. Определить силу манометрического давления воды на цилиндрический затвор, перегораживающий прямоугольный канал, и центр давления, если глубина перед затвором h1 = 4,2 м, диаметр затвора d=3м, а ширина пролета b=10 м. Воды в нижнем бьефе.
Скачать решение задачи 1.69 (Решебник 4)
Задача 1-70. Цилиндрический затвор может вращаться вокруг горизонтальной оси (рис. 1-58). Центр тяжести затвора находится на радиусе, расположенном под углом ф=45° « горизонту, и удален от оси вращения на ОА =1/5r. Радиус затвора r=40 см, ширина b=100 см. Глубина воды h. Определить Необходимый вес затвора, чтобы затвор находился в равновесии и занимал положение, указанное на рис. 1-58.
Скачать решение задачи 1.70 (Решебник 4)
Задача 1-86. Определить величину сжимающего усилия Р2. производимого одним рабочим у гидравлического пресса, если большое плечо рычага имеет длину a=1 м, а малое b=0,1 м, диаметр поршня пресса D=250 мм, диаметр поршня насоса d=25 мм, усилие одного рабочего Р=147H= 15 кГ. Коэффициент полезного действия 0,85 (рис. 1-71).
Скачать решение задачи 1.86 (Решебник 4)
Задача 1-88. Определить давление, создаваемое гидравлическим грузовым аккумулятором (рис. 1-72) и запасаемую им энергию при следующих данных: вес движущихся частей G=725940 H=74000 кГ, диаметр плунжера d=20 см, площадь поперечного сечения плунжера w=314см2, ход плунжера H=6 м. Коэффициент полезного действия аккумулятора 0,85.
Скачать решение задачи 1.88 (Решебник 4)
Задача 1-93, Определить вес поплавка диаметром D=20 см, который при слое бензина H=>80 см обеспечивал бы автоматическое открытие клапана диаметром d=4 см (рис. 1-76). Длина тяги h =74 см. Вес клапана и тяги принять 1,7 H=0,173 кГ. Относительный удельный вес бензина 0,75.
Скачать решение задачи 1.93 (Решебник 4)
Задача 1-104. Проверить остойчивость плавания на воде совершенно одинаковых по своим размерам брусьев квадратного поперечного сечения, выполненных из однородных материалов со следующими относительными удельными весами: 1) дуб (т) =0,9, 2) бук (т) =0,80, 3) береза (т)=0,75, 4) соcна (т)=0,50, 5) пробковое дерево (т)=0,25, 6) особо легкий материал (n)=0,125.
Скачать решение задачи 1.104 (Решебник 4)
Задача 1-105. Определить остойчивость треугольной равнобедренной призмы, имеющей следующие размеры: ширина поверху b=1,40 м. Длина l=5 м. Угол при вершине а=60°. Относительный удельный вес призмы 0,75 (рис. 1-79).
Скачать решение задачи 1.105 (Решебник 4)
Задача 1-106. Определить остойчивость металлической баржи (рис. 1-80) в порожнем и груженом состоянии. После загрузки возвышение ее борта над водой 0,5 м. Ширина баржи b=8 м, клипа l=60 м, высота h=3,50 м, толщина стенок =0,01 м, груз – мокрый песок (относительный удельный вес 2,0). Относительный удельный вес железа 7,8. Для упрощения расчета принять, что 1) баржа имеет прямоугольное очертание, 2) вес переборок и других конструктивных частей баржи условно отнесен к весу ее стенок.
Скачать решение задачи 1.106 (Решебник 4)
Задача 2.10 Горизонтальное сопло запроектировано таким образом, что скорость воды вдоль осевой линии изменяется по линейному закону от «1=2 м/сек до u1=20 м/сек на длине 40 см (рис. 2-9,а). Определить разность давлений, соответствующую этому изменению скорости, пренебрегая потерями на трение. Вычислить величину градиента давления в начальном сечении и в конечном, отстоящем от него на 40 см. Построить эпюру изменения пьезометр метрического напора z+P/y – по оси сопла, считая, что давление в конечном сечении равно атмосферному.
Скачать решение задачи 2.10 (Решебник 4)
Задача 2-32. Определить глубину Воды hг во входной части сооружения прямоугольного сечения и ширину bг (рис. 2-17), чтобы отношение площади живого сечения после сужения к площади живого сечения в канале составляло 0,4. Расчетный расход Q= 10 ч3/сек. Канал трапецеидального сечения с коэффициентом заложения откоса m=ctdO=1,5 и шириной по дну b1 = 6 м. Глубина воды в канале h1 = 1,5 м. высота порога при входе Р=0,3 м. Построить линию удельной энергии и показать пьезометрическую линию.
Скачать решение задачи 2.32 (Решебник 4)
Задача 2-34. Вода при температуре t=12° С подается по трубе диаметром d=4 см. Расход воды Q=70 см3/сек. Определить режимы потока и описать характер движения струйки краски, введенной в центре поперечного сечения трубы. Какой расход нужно пропускать по трубе, чтобы изменить режим движения?
Скачать решение задачи 2.34 (Решебник 4)
Задача 2-40. Вычислить коэффициент Кориолиса при ламинарном движении и выразить среднюю скорость v через максимальную umax при условии, что скорость в открытом прямоугольном лотке глубиной h (рис. 2-19) и шириной b изменяется от нуля у дна до максимальной на поверхности по уравнению параболы
Скачать решение задачи 2.40 (Решебник 4)
Задача 2-43. Определить потери напора в водопроводе длиной l=500 м при подаче Q=100 л/сек, если трубы чугунные, бывшие в эксплуатации, d=250 мм и шероховатость 1,35 мм. Температура воды t=10 С
Скачать решение задачи 2.43 (Решебник 4)
Задача 2-45. Определить, какой расход можно перекачать сифоном из водоема А в водоем В при разности горизонтов H = 1,5 м (рис. 2-20), если длина сифона l=75 м, а диаметр сифона d=200 мм. Трубы чугунные, нормальные (шероховатость 1,35 мм). Вычислениями выяснить, будет ли в сечениях 1-1, 2-2, 3-3, 4-4, 5-5 манометрическое давление или вакуум? Найти, где расположены сечения, в которых давление в сифоне будет равно атмосферному. Почему в сечении 3-3 будет наибольший вакуум? При расчете скоростными напорами в водоемах пренебречь. Наибольшее превышение над уровнем воды в водоеме л принять s=2 м, а глубины погружения h1 = 2 л и h2=1 м. Температура воды t=15°С.
Скачать решение задачи 2.45 (Решебник 4)
Источник
Формула давления на дно и стенки сосуда
Давление жидкости обусловлено ее весом и, соответственно сила этого давления F равна весу жидкости P. Вес жидкости можно определить, зная ее массу m. А массу можно вычислить по формуле: m=ρV. Объем жидкости в прямоугольном сосуде легко рассчитать. Обозначим высоту сосуда h, а площадь дна буквой S. Тогда объем будет равен: V=Sh. Формула массы в таком случае принимает вид: m=ρV=ρSh . Вес жидкости будет равен: P=gm=gρSh. чтобы рассчитать давление, нам нужна сила этого давления. А мы уже говорили, что сила давления в данном случае равна весу жидкости, поэтому формула давления принимает следующий вид:
Формула для этого давления в атмосфере. Кроме того, поскольку давление представляет собой силу на единицу измерения площади, то. Чтобы рассчитать давление через инструмент барометра, можно было бы заменить объем ртути в барометре в уравнение. Это дало бы уравнение. Вероятно, метеоролог даст атмосферное давление или барометрическое давление в 30 дюймов. Он состоит из длинной трубки, закрытой на одном конце, заполненной ртутью и перевернутой в сосуде с ртутью. На уровне моря сила атмосферного давления будет поддерживать колонку с содержанием ртути 760 мм в высоту.
p=P/S=gρSh/S или p=gρh
То есть в итоге мы пришли к очень интересному моменту – давление не зависит от объема и формы сосуда. Оно зависит только от плотности и высоты столба конкретной жидкости в данном случае. Из чего следует, что, увеличив высоту сосуда, мы можем при небольшом объеме создать довольно высокое давление.
Для давления газа на дно и стенки сосуда формула будет иметь точно такой же вид.
Простые приложения, связанные с давлением
Фактически вес столба ртути равен силе атмосферного давления. Подобным же образом атмосферное давление заставляет воду в подобной колонне высотой до 34 футов! После запуска атмосферное давление на поверхность верхнего контейнера заставляет воду за короткую трубу заменить воду, вытекающую из длинной трубки.
- Фактически это приводит к снижению давления воздуха внутри соломы.
- Сифон можно запустить, заполнив трубку водой.
Наблюдения Бойля можно суммировать в утверждении: при постоянной температуре объем газа изменяется обратно пропорционально давлению, оказываемому на него.
Применение давления на дно и стенки сосуда
Еще один интересный момент заключается в том, что согласно закону Паскаля давление распределяется равномерно не только на дно и стенки, но и в направлении вверх. То есть, если мы погрузим какое-либо тело на определенную глубину, то на него снизу будет действовать сила, равная силе давления на данной глубине, как бы выталкивая тело на поверхность. Именно благодаря этому явлению возможно плавание кораблей. Несмотря на довольно внушительный вес, вода выталкивает судно вследствие эффекта давления воды на стенки сосуда, которыми в данном случае являются борта корабля. С понижением глубины давление увеличивается. Люди научились использовать это явление
, делая борта кораблей в форме сужающихся вниз конусов. Именно поэтому нас доступно покорение морей и океанов.
Кинетическая молекулярная теория Пояснение
Наблюдения за давлением можно объяснить, используя следующие идеи. Быстрое движение и столкновения молекул со стенками контейнера вызывает давление. Давление пропорционально числу молекулярных столкновений и силе столкновений в определенной области. Чем больше столкновений молекул газа со стенками, тем выше давление.
В 17 веке Роберт Бойл впервые сформулировал связь между давлением, объемом и температурой, поскольку они связаны с газом по формуле. Эта формула была результатом его экспериментов с газом, и, как он заметил, газ имел тенденцию к изменению давления, когда он занимал контейнеры различного размера.
А что по поводу давления газов?
Что касается газов, то для них расчет будет абсолютно таким же. Соответственно, наибольший вес окружающего нас газа – воздуха, будет у поверхности Земли. А с увеличением высоты будет уменьшаться как среднее давление, так и плотность окружающего газа. Поэтому воздух на высоте очень разреженный. Там очень трудно как дышать, так и летать, потому что крыльям самолетов не на что опираться. Именно поэтому набирать очень большую высоту летательные аппараты могут только на очень высокой скорости, увеличивая таким образом количество воздуха под крылом в единицу времени.
Эта связь часто упоминается как Закон Бойля. Кроме того, Бойл отметил, что газы имеют тенденцию «возвращаться» к его первоначальному давлению после удаления из контейнера, в котором он либо был сжат, либо расширен. Общая разница в высоте напрямую коррелировала с давлением атмосферы.
Бойл проиллюстрировал это через формула. Рон Куртус. Давление – это сила на объекте, который распространяется по поверхности. Уравнение для давления – это сила, деленная на область, где применяется сила. Хотя это измерение является простым, когда твердое тело надавливает на твердое тело, корпус твердого тела, нажимая на жидкость или газ, требует, чтобы жидкость была ограничена в контейнере.
Нужна помощь в учебе?
Предыдущая тема: Давление в жидкости и газе
Следующая тема:   Сообщающиеся сосуды
В соответствии с законом Паскаля
гидростатическое давление на уровне
горизонтального дна сосуда при высоте
жидкости в сосуде, равной Н
,
Сила также может быть создана весом объекта. Вопросы, которые могут возникнуть, включают.
- Какое давление, когда твердое тело подталкивает другое твердое тело?
- Что происходит, когда твердое тело нажимает на ограниченную жидкость?
- Что происходит, когда сила исходит из гравитации?
Этот урок ответит на эти вопросы.
Когда вы применяете силу к твердому объекту, давление определяется как прилагаемое усилие, деленное на область применения. Вы можете видеть, что при заданной силе, если площадь поверхности меньше, давление будет больше. Если вы используете большую область, вы распространяете силу, и давление становится меньше.
Отсюда следует, что абсолютное давление
р
на горизонтальное дно не зависит
от формы сосуда и объема жидкости в нем.
При данной плотности жидкости оно
определяется лишь высотой столба
жидкостиН
и внешним давлениемр
0 .
Сила давления жидкости Р
ж на
дно сосуда зависит от его площадиF
:
(1.8)
Твердое прессование на ограниченной жидкости
Когда жидкость или газ заключены в контейнер или цилиндр, вы можете создать давление, применяя усилие с помощью твердого поршня. В ограниченной жидкости – пренебрегая влиянием силы тяжести на жидкость – давление одинаково во всем контейнере, одинаково нажимая на все стенки. В случае велосипедного насоса давление, создаваемое внутри насоса, будет передаваться через шланг в велосипедную шину. Но воздух все еще ограничен.
Увеличение силы увеличит давление внутри цилиндра. Поскольку вес объекта является силой, вызванной гравитацией, мы можем заменить вес в уравнении давления. Таким образом, давление, вызванное весом объекта, – это вес, разделенный на область, где применяется вес.
Общая сила давления на дно сосуда
(1.9)
Внешнее давление р 0 передается
жидкостью каждому элементу поверхности
стенки одинаково, поэтому равнодействующая
внешнего давления приложена в точке
центра тяжести поверхности стенки.
Давление веса жидкости на стенку не
одинаково по высоте: чем глубже расположен
элемент стенки, тем большее давление
веса жидкости он испытывает. Поэтому
центр давления жидкости на вертикальную
стенку расположен всегда ниже центра
тяжести смоченной поверхности стенки.
Если вы помещаете твердый предмет на пол, давление на пол над областью контакта – это вес предмета, разделенного областью на полу. Хороший пример того, как сила на небольшой площади может привести к очень сильному давлению, наблюдается в обуви женщин с высокими шипами. Эти типы обуви могут нанести ущерб некоторым полам из-за очень высокого давления на пол на каблук.
Средний ботинок распределяет вес человека более 20 квадратных дюймов. В некоторых случаях этого достаточно, чтобы повредить пол. Если вы положите жидкость в контейнер, вес этой жидкости будет нажимать на дно контейнера, аналогичную весу твердого объекта. Давление на дно контейнера будет таким же, как если бы вес был из твердого вещества.
Сила полного гидростатического давления
на плоскую стенку равна произведению
гидростатического давления в центре
тяжести этой стенки и ее площади:
(1.10)
где
– расстояние от верхнего уровня жидкости
до центра тяжести смоченной поверхности
стенки; оно зависит от геометрической
формы стенки.
Единственное различие заключается в том, что давление в жидкости идет во все стороны. Таким образом, давление на сторонах внизу будет одинаковым. Газы и жидкости проявляют давление из-за их веса в каждой точке жидкости. Давление может быть измерено для твердого тела, нажимая на твердое тело, но в случае твердого тела, нажимающего на жидкость или газ, требуется, чтобы жидкость была ограничена в контейнере. Надавите на себя, чтобы преуспеть.
Самые популярные книги по физике силы. Если да, отправьте электронное письмо с отзывами. Пожалуйста, включите его в качестве ссылки на свой сайт или в качестве ссылки в своем отчете, документе или тезисе. Участники, подверженные воздействию осесимметричных нагрузок.
Точка приложения сил Р
иР
изб носит название центра давленияh
д и может быть определена в соответствии
с законами теоретической механики через
момент инерции смоченной поверхности
стенки
Тонкостенный цилиндр под давлением. Преамбула: сосуды высокого давления чрезвычайно важны в промышленности. Обычно в обычной практике используются два типа сосудов высокого давления, такие как цилиндрический сосуд высокого давления и сферический сосуд высокого давления.
При анализе этих стеновых цилиндров, подвергнутых внутренним давлениям, предполагается, что радиальные планы остаются радиальными, а доза толщины стенки не изменяется из-за внутреннего давления. Далее, при анализе их стеновых цилиндров, вес жидкости считается пренебрежимым.
(1.11)
где J
x
– момент инерции
стенки относительно осиox
.
Для прямоугольной стенки при уровне
жидкости в сосуде, равном Н
, и ширине
стенкиВ
Следовательно,
Этот цилиндр подвергается разности гидростатического давления р между его внутренней и внешней поверхностями. Во многих случаях р между давлением избыточного давления внутри цилиндра, заставляя внешнее давление быть окружающим. Небольшой кусок стенки цилиндра показан изолированно, а напряжения в соответствующем направлении также показаны.
Такой компонент не срабатывает, поскольку при чрезмерно высоком внутреннем давлении. Хотя это может потерпеть неудачу, разрываясь по пути, следующему окружности цилиндра. При нормальных обстоятельствах он терпит неудачу по обстоятельствам, которые он терпит неудачу, разрываясь вдоль пути, параллельного оси. Это говорит о том, что напряжение пялец значительно выше, чем осевое напряжение.
Практическое использование законов гидростатики
Применив закон Паскаля к сообщающимся
сосудам, можно прийти к следующим
выводам.
Если сосуды (рис. 1.4 а
) заполнены
однородной жидкостью (одинаковой
плотности), то при равновесии давление
в точке 0 может быть выражено:
либо
,
Чтобы получить выражения для различных напряжений, сделаем следующее. Жидкие резервуары и емкости для хранения, водопроводные трубы, котлы, корпуса подводных лодок и некоторые компоненты воздушной плоскости являются общими примерами тонкостенных цилиндров и сфер, куполов крыши.
В стенке нет напряжений сдвига. Продольные и пястные напряжения не меняются через стену. Состояние выноса для элемента тонкостенного сосуда высокого давления считается двухосным, хотя внутреннее давление, действующее нормали к стене, вызывает локальное напряжение сжатия, равное внутреннему давлению. На самом деле состояние трехосевого напряжения существует на внутри судна. Однако для тогдашнего стенного сосуда давления третье напряжение намного меньше, чем два других напряжения, и по этой причине в этом можно пренебречь.
т.е. в сообщающихся сосудах заполняющая
их однородная жидкость располагается
на одинаковом уровне.
При заполнении сосудов жидкостями с
различной плотностью (рис 1.4 б
) в
условиях равновесия давление в точке
О будет
либо
.
Тонкие цилиндры, подверженные внутреннему давлению. Когда тонкостенный цилиндр подвергается внутреннему давлению, в материалах цилиндра будут установлены три взаимно перпендикулярных главных напряжения, а именно. Окружность или шероховатость. Теперь определим эти напряжения и определим выражения для них.
Обруч или периферический стресс. Это напряжение, которое создается в противодействии разрушающему эффекту приложенного давления и может быть наиболее удобно обрабатываться с учетом равновесия цилиндра. На рисунке мы показали одну половину цилиндра. Общее усилие на одной половине цилиндра из-за внутреннего давления р.
Рисунок 1.4
– Сообщающиеся сосуды, заполненные
жидкостью:
а
– одной плотности;б
– разной плотности
Следовательно
,
т.е.
. (1.12)
Т. – сила в одной стенке полуцилиндра. Требования к сложным системам автоматизированной обработки, потребность во все более жестком управлении технологическими процессами и все более строгая нормативная среда приводят к тому, что инженеры-разработчики стремятся получать более точные и надежные системы измерения уровня. Повышенная точность позволяет снизить изменчивость химического процесса, что приводит к повышению качества продукта, снижению затрат и меньшему количеству отходов. Правила, особенно касающиеся электронных документов, устанавливают жесткие требования к точности, надежности и электронной отчетности.
Соотношение (1.12) указывает на то, что
высоты уровней жидкости, отсчитываемые
от поверхности раздела, обратно
пропорциональны плотностям жидкостей.
Этот принцип используется для измерения
уровня жидкости в закрытых аппаратах
с помощью водомерных стёкол, в жидкостных
манометрах.
Если сообщающиеся сосуды заполнены
одной и той же жидкостью, но давление
над уровнем жидкости в них разное – р
1 ир
2 , то при равновесии
Технология измерения уровня в переходном периоде
Новые технологии измерения уровня помогают удовлетворить эти требования. Простейшим и самым старым промышленным устройством, конечно же, является смотровое стекло. Ручной подход к измерению, очки зрения всегда имели ряд ограничений. Уплотнения подвержены утечке, а наращивание, если оно присутствует, скрывает видимый уровень. Можно безоговорочно заявить, что обычные смотровые стекла являются самым слабым звеном любой установки. Поэтому их быстро заменяют более современные технологии.
,
. (1.13)
Последнее выражение используется при
измерении давления или разности давлений
между различными точками с помощью
дифференциальных U
-образных
манометров.
Другие устройства обнаружения уровня включают те, которые основаны на удельном весе, физическом свойстве, наиболее часто используемом для восприятия поверхности уровня. Простой поплавок, имеющий удельный вес между потоками технологической жидкости и паром свободного пространства, будет плавать на поверхности, точно после ее подъемов и падений. Измерения гидростатической головки также широко использовались для определения уровня.
Когда задействованы более сложные физические принципы, возникающие технологии часто используют компьютеры для выполнения вычислений. Это требует отправки данных в машиночитаемом формате от датчика к системе управления или мониторинга. Полезными форматами выходных сигналов преобразователя для компьютерной автоматизации являются токовые петли, аналоговые напряжения и цифровые сигналы. Аналоговые напряжения просты в настройке и работе, но могут иметь серьезные проблемы с помехами и помехами.
Рисунок 1.5.
– К определению высоты гидравлического
затвора
Этот же принцип используется для
определения высоты гидравлического
затвора в аппаратах, заполненных
жидкостью (рис. 1.5).
На рисунке представлен сосуд, заполненный
двумя жидкостями с плотностями 1 и 2 ; уровень
их раздела на глубинеz
1 необходимо поддерживать в процессе
работы постоянным с помощью гидрозатвора,
представляющего собойU
-образную
трубку, подсоединённую снизу (на выходе
жидкости из аппарата).
В соответствии с уравнением (1.12) высота
гидравлического затвора в случае
одинакового давления над жидкостью
внутри аппарата и на выходе из затвора
. (1.14)
На использовании данного уравнения
гидростатики основана работа таких
простейших гидравлических машин, как
гидравлический пресс, мультипликатор
(для повышения давления), домкрат,
подъемник и др.
Рисунок 1.6
– Схема гидравлического пресса
На рис. 1.6 показана схема
гидравлического пресса. Если к поршню
П 1 , имеюшему площадьF
1 ,
приложена силаР
1 , то эта сила
будет передаваться на жидкость; жидкость
же будет давить на поршень П 2 ,
имеющий площадьF
2 , с силойР
2
(1.15)
так как гидростатические давления в
точках площади F
1 и площадиF
2 практически равны между собой:
(1.16)
Из уравнения (1.16) следует, что при помощи
пресса сила Р
1 увеличивается
во столько раз, во сколько площадьF
2 больше площадиF
1 .
Источник