Как найти высоту сосуда формула
4.2. Элементы гидростатики
4.2.3. Гидростатическое давление
Жидкость, находящаяся в некотором сосуде, оказывает на его дно и стенки гидростатическое давление.
Гидростатическое давление (давление жидкости) на дно сосуда (рис. 4.10) рассчитывают по формуле
pгидр = ρ0gh,
где ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – высота столба жидкости.
В Международной системе единиц гидростатическое давление измеряется в паскалях (1 Па).
Сила гидростатического давления на дно сосуда (см. рис. 4.10) определяется как произведение:
Fгидр = pгидрS = ρ0ghS,
где pгидр – гидростатическое давление на дно сосуда; ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – высота столба жидкости; S – площадь дна сосуда.
Рис. 4.10
Гидростатическое давление (давление жидкости) на вертикальную стенку сосуда (рис. 4.11) рассчитывают по формуле
p гидр = ρ 0 g h 2 ,
где ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – высота вертикальной стенки сосуда (столба жидкости).
Рис. 4.11
Сила гидростатического давления на вертикальную стенку сосуда (см. рис. 4.11) определяется как произведение:
F гидр = p гидр S = ρ 0 g h 2 S ,
где pгидр – гидростатическое давление на дно сосуда; ρж – плотность жидкости; g – модуль ускорения свободного падения; h – высота столба жидкости; S – площадь вертикальной стенки.
Рис. 4.11
При расчете давленияна днооткрытого водоема (рис. 4.12) необходимо учитывать атмосферное давление:
p = pатм + ρ0gh,
где pатм – атмосферное давление; ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h – глубина водоема.
Рис. 4.12
Сила давления на дно открытого водоема определяется произведением:
F = pS = (pатм + ρ0gh)S,
где S – площадь дна водоема.
Гидростатическое давление жидкости на дно мензурки (рис. 4.13), отклоненной от вертикали на некоторый угол:
p = ρ0gh1 cos α,
где ρ0 – плотность жидкости; g – модуль ускорения свободного падения; h1 – высота столба жидкости при вертикальном положении мензурки; h2 = h1 cos α – высота столба жидкости при отклонении мензурки на угол α от ее вертикального положения.
Рис. 4.13
Пример 25. Цилиндрический сосуд радиусом 10 см имеет высоту 30 см. Его заполнили до краев жидкостью плотностью 2,5 г/см3. Найти величину средней силы гидростатического давления, действующей на боковую поверхность цилиндра.
Решение. Средняя сила гидростатического давления, действующая на боковую поверхность цилиндра, определяется произведением:
⟨ F гидр ⟩ = ⟨ p ⟩ S ,
где ⟨ p ⟩ – среднее гидростатическое давление на боковую поверхность цилиндра; S – площадь боковой поверхности цилиндра.
Найдем каждый из сомножителей следующим образом:
- среднее гидростатическое давление на боковую поверхность цилиндра
⟨ p ⟩ = ρ 0 g h 2 ,
где ρ0 – плотность жидкости, заполняющей сосуд; g – модуль ускорения свободного падения; h – высота цилиндра; т.е. среднее значение гидростатического давления определяется как давление на середину боковой поверхности цилиндра;
- площадь боковой поверхности цилиндра
S = 2πRh,
где 2πr – длина окружности; R – радиус дна цилиндра; т.е. площадь боковой поверхности цилиндра определяется как площадь прямоугольника, одна из сторон которого равна высоте цилиндра, а другая – периметру круга (длине окружности), лежащего в его основании.
Подстановка среднего гидростатического давления ⟨ p ⟩ и площади боковой поверхности цилиндра S в исходную формулу позволяет получить выражение для вычисления модуля искомой силы:
⟨ F гидр ⟩ = π ρ 0 g R h 2 .
Расчет дает значение:
⟨ F гидр ⟩ = π ⋅ 2,5 ⋅ 10 3 ⋅ 10 ⋅ 10 ⋅ 10 − 2 ⋅ ( 30 ⋅ 10 − 2 ) 2 ≈ 707 Н ≈ 0,71 кН.
Пример 26. Атмосферное давление составляет 100 кПа. Плотность воды в водоеме равна 1,0 г/см3. Найти глубину открытого водоема, на которой давление в четыре раза больше атмосферного.
Решение. Давление в открытом водоеме определяется формулой
p = pатм + ρ0gh,
где pатм – атмосферное давление; ρ0 – плотность воды; g – модуль ускорения свободного падения; h – искомая глубина водоема.
По условию задачи
p = 4pатм.
Подстановка указанного значения в исходную формулу дает:
4pатм = pатм + ρ0gh,
или
3pатм = ρ0gh.
Выразим отсюда искомую глубину водоема
h = 3 p атм ρ 0 g
и произведем вычисление:
h = 3 ⋅ 100 ⋅ 10 3 1,0 ⋅ 10 3 ⋅ 10 = 30 м.
Таким образом, давление в открытом водоеме в 4 раза превышает атмосферное на глубине 30 м.
Источник
Определение
Соединенные между собой сосуды называют сообщающимися.
В таких сосудах жидкость имеет возможность перетекать из одной емкости в другую (рис.1). Форма сообщающихся сосудов может быть самая разная.
Допустим, что в сообщающиеся сосуды налита однородная жидкость, то в этих сосудах жидкость устанавливается на одном уровне, если давление над поверхностью жидкости одинаково, и не важно какую форму имеют сосуды. В неподвижной жидкости давление ($p$) на одном уровне в сообщающихся сосудах является равным, так как мы знаем, что:
[p=rho gh left(1right),]
где $rho $ – плотность жидкости; $g$ – ускорение свободного падения; $h$ – высота столба жидкости. Так как давление на одном уровне жидкости одинаково, то равными будут и высоты столбов жидкости.
Жидкости разной плотности в сообщающихся сосудах
Допустим, что в сообщающиеся сосуды налили жидкость разной плотности (рис.2(б)). В состоянии равновесия жидкостей, их уровни не будут находиться на одном уровне (высоты столбов жидкости равными не будут).
Жидкости в сосудах находятся в равновесии. Давления на уровне A (граница раздела разных жидкостей) (рис. 2 (б)) равны:
[{rho }_1gh_1={rho }_2gh_2left(2right),]
где ${rho }_1$ и ${rho }_2$ – плотности жидкостей. Найдем отношение высот столбов жидкостей в сосудах:
[frac{h_1}{h_2}=frac{{rho }_2}{{rho }_1}left(3right).]
Формула (3) говорит о том, что в сообщающихся сосудах высоты столбиков жидкости над уровнем их раздела обратно пропорциональны плотностям этих жидкостей. При одинаковом давлении над поверхностями жидкостей, высота столба жидкости с меньшей плотностью будет больше, чем высота столба более плотной жидкости.
Гидравлический пресс и другие примеры использования сообщающихся сосудов
В технике сообщающиеся сосуды используют часто. Например, существует такое устройство, как гидравлический пресс. Его изготавливают из двух цилиндров разного радиуса, в которых находятся поршни (рис.3). Сообщающиеся сосуды пресса обычно заполняют минеральным маслом.
Пусть площадь первого поршня, к которому прикладывают силу ${overline{F}}_1,$ равна $S_1$, площадь второго $S_2$, к нему приложена сила ${overline{F}}_2$. Давление, которое создает первый поршень равно:
[p_1=frac{F_1}{S_1}left(4right).]
Второй поршень давит на жидкость:
[p_2=frac{F_2}{S_2}left(5right).]
Если система находится в состоянии равновесия, то по закону Паскаля давления $p_1$ и $p_2$ равны:
[frac{F_1}{S_1}=frac{F_2}{S_2}left(6right).]
Получим:
[F_1=F_2frac{S_1}{S_2}(7)]
величина первой силы больше модуля силы $F_2$ в $frac{S_1}{S_2}$ раз. Это означает, что при помощи гидравлического пресса, прикладывая небольшую силу к поршню малого сечения, можно получить большую по величине силу, которая будет действовать на большой поршень.
По принципу сообщающихся сосудов, в особенности раньше, действовал водопровод. Такой водопровод сейчас еще можно наблюдать на дачных участках. На относительно большой высоте устанавливается бак с водой, от бака идут водопроводные трубы, закрываемые кранами. Давление у кранов соответствует давлению столба воды, который равен разности высот уровень крана – уровень воды в баке.
Принципом сообщающихся сосудов пользовались, когда проектировали фонтаны, работающие без насосов, шлюзы на реках и каналах.
Примеры задач с решением
Пример 1
Задание. Имеются два цилиндрических сосуда. Высота столба жидкости в одном равна $h_1$, в другом $h_2$. Эти сосуды соединяют трубкой. Насколько изменится высота столба жидкости в левом сосуде, если площадь поперечного сечения его $S_1>S_2$ , $S_2$ – площадь сечения правого сосуда. Объемом трубки пренебречь.
Решение. После того как сосуды соединили, они стали сообщающимися. Часть жидкости из левого сосуда перетечет в правый. Так как жидкость в правом и левом сосудах одна и та же, то уровни жидкости в обоих сосудах будут находиться на одном уровне, то есть высота столбиков жидкости станет равна $H$ в обоих коленах емкости. Определим, какой объем воды перетечет из левого колена в правое:
[Delta V_1=left(h_1-Hright)S_{1 }left(1.1right),]
где $S_{1 }$ – площадь поперечного сечения левого сосуда (сосуда из которого вытекает жидкость). В правом сосуде эта жидкость займет объем равный:
[Delta V_2=left(H-h_2right)S_{2 }left(1.2right),]
где $S_{2 }$ – площадь поперечного сечения правого сосуда. Так как мы считаем, что жидкость не сжимаема, то имеем:
[Delta V_1=Delta V_2left(1.3right).]
Приравниваем правые части выражений (1.2) и (1.1), выражаем высоту столбиков жидкости в правой и левой части сообщающихся сосудов:
[left(h_1-Hright)S_{1 }=left(H-h_2right)S_{2 }to H=frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }} left(1.4right).]
Используя выражение (1.4), изменение высоты жидкости в левом колене, получим равным:
[Delta h=h_1-H=h_1-frac{h_1S_{1 }+S_{2 }h_2}{S_1+S_{2 }}=frac{h_1S_1+h_1S_2-h_1S_{1 }-S_{2 }h_2}{S_1+S_{2 }}=] [=frac{h_1S_2-S_{2 }h_2}{S_1+S_{2 }}=frac{h_1-h_2}{S_1+S_{2 }}S_2.]
Ответ. $Delta h=frac{h_1-h_2}{S_1+S_{2 }}S_2$
Пример 2
Задание. Какой будет сила давления на большой поршень (площадью $S_1$) гидравлического пресса, если площадь его малого поршня равна $S_2$, при этом на него действует сила равная $F_2$?
Решение. В теоретическом разделе сказано, что гидравлический пресс представляет собой систему из сообщающихся сосудов (рис.3). Из закона Паскаля следует, что, прикладывая небольшую силу ($F_2$) к поршню малого сечения ($S_2$) пресса, можно получить большую по величине силу, которая будет действовать на большой поршень ($S_1$):
[F_1=F_2frac{S_1}{S_2}(2.1)]
Ответ. $F_1=F_2frac{S_1}{S_2}$
Читать дальше: условия плавания тел.
Источник
4.2. Элементы гидростатики
4.2.5. Сообщающиеся сосуды
Сообщающимися называются сосуды, соединенные между собой каналом, заполненным жидкостью.
Для сообщающихся сосудов справедлив закон сообщающихся сосудов: высоты взаимно уравновешенных столбов разнородных жидкостей обратно пропорциональны плотностям этих жидкостей:
h 1 h 2 = ρ 2 ρ 1 ,
где h1 – высота столба жидкости плотностью ρ1; h2 – высота столба жидкости плотностью ρ2.
Указанный закон справедлив в отсутствие сил поверхностного натяжения.
Если сообщающиеся сосуды заполнены однородной жидкостью
ρ1 = ρ2,
то свободные поверхности жидкости устанавливаются на одном уровне, независимо от формы сосудов (рис. 4.14):
h1 = h2,
где h1 – высота столба жидкости в левом колене; h2 – высота столба жидкости в правом колене сообщающихся сосудов.
Рис. 4.14
Если сообщающиеся сосуды заполнены разнородными жидкостями
ρ1 ≠ ρ2,
то свободные поверхности жидкостей, независимо от формы сосуда (рис. 4.15), устанавливаются так, что выполняется отношение
h 1 h 2 = ρ 2 ρ 1 ,
где h1 – высота столба жидкости плотностью ρ1; h2 – высота столба жидкости плотностью ρ2.
Рис. 4.15
Если сообщающиеся сосуды заполнены несколькими жидкостями (например, как показано на рис. 4.16), то гидростатическое давление на одном уровне (отмеченном пунктиром) в левом колене определяется формулой
p1 = ρ1gh1,
в правом колене –
p2 = ρ2gh2 + ρ3gh3.
Рис. 4.16
Равенство давлений на указанном уровне
p1 = p2
позволяет записать тождество:
ρ1h1 = ρ2h2 + ρ3h3.
Пример 28. Два высоких сосуда, диаметр одного из которых в два раза больше диаметра второго, в нижней части соединены тонким шлангом. Площадь сечения узкого сосуда равна 10 см2. Система заполнена некоторым количеством жидкости плотностью 1,6 г/см3. Найти, на сколько миллиметров повысится уровень жидкости в каждом из сосудов, если в систему добавить 0,12 кг той же жидкости.
Решение. В сообщающихся сосудах однородная жидкость устанавливается на одном уровне.
Добавление в систему некоторого количества жидкости массой m приводит к ее распределению по двум сосудам в соответствии с площадью их поперечного сечения:
- в первом сосуде оказывается масса жидкости
m1 = ρV1 = ρ∆h1S1,
где ρ – плотность жидкости; V1 = S1∆h1 – объем жидкости в первом сосуде; S1 – площадь поперечного сечения первого сосуда; ∆h1 – повышение уровня жидкости в первом сосуде;
- во втором сосуде оказывается масса жидкости
m2 = ρV2 = ρ∆h2S2,
где V2 = S2∆h2 – объем жидкости во втором сосуде; S2 – площадь поперечного сечения второго сосуда; ∆h2 – повышение уровня жидкости во втором сосуде.
Повышение уровней жидкости в обоих сосудах одинаково:
∆h1 = ∆h2 = ∆h,
поэтому масса жидкости, добавленной в систему, определяется формулой
m = m1 + m2 = ρ∆h(S1 + S2).
Выразим отсюда искомое значение ∆h:
Δ h = m ρ ( S 1 + S 2 ) .
Площади поперечного сечения сосудов связаны с их диаметрами формулой:
- для первого (широкого) сосуда
S 1 = π d 1 2 4 ,
- для второго (узкого) сосуда
S 2 = π d 2 2 4 ,
где d1 = 2d2 – диаметр первого (широкого) сосуда; d2 – диаметр второго (узкого) сосуда.
Отношение площадей
S 1 S 2 = π d 1 2 4 4 π d 2 2 = d 1 2 d 2 2 = ( d 1 d 2 ) 2 = ( 2 d 2 d 2 ) 2 = 4
позволяет найти площадь широкого сосуда:
S1 = 4S2.
Подставив S1 в формулу для ∆h
Δ h = m ρ ( 4 S 2 + S 2 ) = m 5 ρ S 2 ,
рассчитаем значение высоты, на которую повысится уровень жидкости в сосудах:
Δ h = 0,12 5 ⋅ 1,6 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 15 ⋅ 10 − 3 м = 15 мм.
Пример 29. Два высоких сосуда, диаметр одного из которых в два раза больше диаметра другого, в нижней части соединены тонким шлангом. Площадь сечения широкого сосуда составляет 10 см2. Система заполнена жидкостью плотностью 6,0 г/см3. В узкий сосуд добавляют 0,12 кг жидкости плотностью 2,0 г/см3, а затем – 0,12 кг жидкости плотностью 4,0 г/см3. Найти разность уровней жидкостей в сосудах.
Решение. В сообщающихся сосудах неоднородная жидкость устанавливается на разных уровнях таким образом, что гидростатическое давление на выбранном уровне оказывается одинаковым:
p1 = p2,
где p1 – давление в широком сосуде; p2 – давление в узком сосуде.
На рисунке пунктирной линией обозначен уровень, на котором будем рассчитывать гидростатическое давление в широком и узком сосудах.
Гидростатическое давление на выбранном уровне:
- в широком сосуде
p1 = ρ1gh1,
где ρ1 – плотность жидкости, заполняющей систему изначально; g – модуль ускорения свободного падения; h1 – высота столба жидкости в широком сосуде;
- в узком сосуде
p2 = ρ2gh2 + ρ3gh3,
где ρ2 – плотность первой жидкости, добавленной в узкий сосуд; h2 – высота столба первой жидкости; ρ3 – плотность второй жидкости, добавленной в узкий сосуд; h3 – высота столба второй жидкости.
Равенство давлений на указанном уровне
ρ1gh1 = ρ2gh2 + ρ3gh3
позволяет определить высоту столба жидкости в широком сосуде:
h 1 = 1 ρ 1 ( ρ 2 h 2 + ρ 3 h 3 ) ,
где высоты жидкостей h2 и h3 определяются соответствующими массами и плотностями:
- для первой жидкости
h 2 = m 2 ρ 2 S 2 ;
- для второй жидкости
h 3 = m 3 ρ 3 S 2 ,
где S2 – площадь поперечного сечения узкого сосуда; m2 – масса первой жидкости, добавленной в узкий сосуд; m3 – масса второй жидкости, добавленной в узкий сосуд.
Подстановка h2 и h3 в формулу для h1 дает
h 1 = 1 ρ 1 ( ρ 2 m 2 ρ 2 S 2 + ρ 3 m 3 ρ 3 S 2 ) = m 2 + m 3 ρ 1 S 2 .
Площади поперечного сечения сосудов связаны с их диаметрами формулой:
- для широкого сосуда
S 1 = π d 1 2 4 ,
- для узкого сосуда
S 2 = π d 2 2 4 ,
где d1 = 2d2 – диаметр широкого сосуда; d2 – диаметр узкого сосуда.
Отношение площадей
S 1 S 2 = π d 1 2 4 4 π d 2 2 = d 1 2 d 2 2 = ( d 1 d 2 ) 2 = ( 2 d 2 d 2 ) 2 = 4
позволяет найти площадь узкого сосуда:
S 2 = S 1 4 .
Таким образом, высота столба жидкости в широком сосуде определяется выражением
h 1 = 4 ( m 2 + m 3 ) ρ 1 S 1 .
Высота столба жидкости над указанным уровнем в узком сосуде есть сумма:
h 2 + h 3 = m 2 ρ 2 S 2 + m 3 ρ 3 S 2 = 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 ) .
Искомая разность верхних уровней жидкостей в узком (h2 + h3) и широком h1 сосудах рассчитывается по формуле
Δ h = ( h 2 + h 3 ) − h 1 = 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 ) − 4 ( m 2 + m 3 ) ρ 1 S 1 =
= 4 S 1 ( m 2 ρ 2 + m 3 ρ 3 − ( m 2 + m 3 ) ρ 1 ) .
Произведем вычисление:
Δ h = 4 10 ⋅ 10 − 4 ( 0,12 2,0 ⋅ 10 3 + 0,12 4,0 ⋅ 10 3 − 0,12 + 0,12 6,0 ⋅ 10 3 ) = 0,20 м = 20 см.
Источник