Как соединить два стеклянных сосудах

Как соединить два стеклянных сосудах thumbnail

Соединение отдельных видов стеклянной посуды друг с другом осуществляется с помощью соединительных элементов на шлифах, резиновых или корковых пробках.

СОЕДИНИТЕЛЬНЫЕ ЭЛЕМЕНТЫ ИЗ СТЕКЛА

К соединительным элементам для химической посуды относятся переходники (рис. 44 а-в), насадки (рис. 44 г-е), алонжи (рис. 46). Соединительные элементы предназначены для сборки лабораторных приборов, аппаратов и установок различной сложности.
Таблица 6 – Варианты обозначения соединительных элементов

Обозначение Тип элемента
ЭП1 (ЭП2) элементы прямые с двумя муфтами (кернами – ЭП2)
ЭП3 элементы прямые с муфтой и керном
П1 переходы с одной горловиной
П1О переходы с одной горловиной и отводом
П1И переходы с одной горловиной изогнутые
П2П (П3П) переходы с двумя паралельными горловинами (тремя – П3П)
П2У переходы с двумя горловинами под углом
И<75o2K изгибы под углом 75o с двумя кернами
И<75oKМ изгибы под углом 75o с керном и муфтой
И<90oKМ изгибы под углом 90o с керном и муфтой
И<105oKМ изгибы под углом 105o с керном и муфтой
КПО керны с прямым отводом
КИО керны с изогнутым отводом
МПО муфты с прямым отводом
МИО муфты с изогнутым отводом
АИ (АО) алонжи изогнутые с отводом (прямые с отводом – АО)
АП Аллонжи типа “Паук”
ЗВ затворы высокие
ЗН затворы низкие
Н1 насадки с одной горловиной (двумя – Н2, тремя – Н3)

Примеры использования некоторых переходных элементов представлены на рис. 45. Соединительные элементы должны изготовляться с взаимозаменяемыми конусами типов (таблица 6):Допускается по заказу потребителей изготовлять соединительные элементы с конусами других размеров, не указанных в чертежах и в таблицах.

Толщина стенок соединительных элементов должна быть не менее 1 мм. Нижняя часть соединительных элементов, предназначенная для стекания жидкости, должна быть обрезана под углом не более 60o к центральной оси, зашлифована или оплавлена.

Переходники и НАСАДКИ

Переходники (переходы)применяются в процессе соединения деталей установок для перехода от одного размера стандартного шлифа к другому (рис. 44 а).

насадки применяются для трансформации одних элементов лабораторной установки в другие или для их соединения друг с другом (через насадку) (рис. 44 б-е).

Ассортимент насадок достаточно велик. Некоторые из них используются для подсоединения установки к вукуум-линии (рис. 44 б, в), а для соединения перегонной колбы к холодильнику применяется насадка Вюрца (рис. 44 г.). Часто, в случае отсутствия двухгорлой колбы используют насадку Кляйзена (рис. 44 д.), которая трансформирует одногорлую колбу в двугорлую. Еще одна насадка Кляйзена, но с отводной трубкой (насадка Кляйзена К-типа) (рис. 44 е) применяется при вакуумной перегонке. В одну из трубок помещают капилляр, для равномерного кипения жидкости в вакууме, в другую термометр, а отводную трубку подсоединяют к холодильнику.

Рисунок 44. – Соединительные элементы

Примеры использования различных насадок показаны на рис. 45

Рисунок 45. – Примеры использования соединительных элементов

АЛОНЖИ

Алонж (фр. allonge — удлинитель, надставка) — конструктивный элемент химических приборов (рис 46). Применяется в основном при перегонке для соединения холодильника с приёмником и при других работах.

В конический притёртый шлиф — муфту входит внутренний притёртый шлиф — керн холодильника. Узкий конец аллонжа опускают в приёмник.

В зависимости от выполняемой работы, в лабораториях органического синтеза применяются алонжи различной конструкции. Так, при выполнении простой перегонки может использоваться простейший аллонж, представляющий собой изогнутую трубку, один конец которой соединяется с холодильником, а другой помещается в колбу-приемник (рис 46 а). При получении безводных растворителей используется аллонж с отводом для присоединения хлоркальциевой трубки (рис. 46 б-г). Весьма разнообразны по форме и конструкции аллонжи, использующиеся при перегонке в вакууме. Такие аллонжи обязательно снабжены отводной трубкой для присоединения вакуум линии (водоструйного насоса) и могут иметь несколько трубок для присоединения нескольких приемником одновременно (рис. д-з). Такие устройства имеют название
алонж-«паук». Использование «паука» при перегонке в вакууме позволяет, не отключая вакуум последовательно отгонять жидкости в индивидуальный приемник.

Рисунок 46. – Алонжи

Рисунок 46. – Алонж (насадка) аншютца-тиле

Одним из наиболее удобных при фракционной перегонке и перегонке в вакууме, несомненно, является алонж (насадка) Аншютца-Тиле (иногда форштосс Аншютца-Тиле, рис. ). Он позволяет менять приемники, не нарушая вакуума в приборе и не прерывая перегонки.

Читайте также:  Почему сосуды бывают слабые

Открывая кран 3, переводят собранный в градуированной части алонжа 4 дистиллят в приемник. При необходимости перехода к сбору промежуточной или следующей основной фракции, закрывают кран 3, а кран 1 поворотам на 1800 переводят в положение б. При этом в приемную колбу входит воздух и ее можно заменить на новую

ПРИБОРЫ НА ШЛИФАХ

Стеклянные Шлифы представляют собой плотное соединение двух стеклянных изделий с притертыми, пришлифованными поверхностями.

В лабораторной практике широко используется химическая посуда со стандартными шлифами, позволяющая быстро соединить друг с другом отдельные части установки, добиваясь при этом высокой герметичности. Большинство лабораторных приборов имеет стандартные взаимозаменяемые конические шлифы (нормальные шлифы, НШ). Они обозначаются номерами, соответствующими верхним диаметрам (в миллиметрах). Соединение на шлифах осуществляется при помощи шлифа-муфты (внешний шлиф) и шлифа-керна (внутренний шлиф) (рис. 47). Если отдельные части установки имеют шлифы разных размеров, то следует применять различные переходы на шлифах.

Для крепления муфты и керна, как правило, к их трубкам припаивают “усики” на которые надевают резинку

При работе с коническими шлифами необходимо соблюдать следующие правила:

1. муфта и керн должны быть из одинакового сорта стекла;

2. обе части конического шлифа следует соединять легким вращением;

3. необходимо исключить попадание на шлиф смолообразующих, полимеризующихся и сильнощелочных веществ;

4. краны делительных и капельных воронок и плоские шлифы (крышки эксикаторов) смазывают вазелином;

5. при работе под уменьшенным давлением шлифы необходимо смазывать специальной вакуумной смазкой, которую наносят в небольшом количестве кольцом на среднюю часть конического шлифа и легким вращающим движением керна в муфте добиваются равномерного распределения смазки;

6. правильно смазанный шлиф совершенно прозрачен.

Иногда, при использовании шлифованной посуды очень трудно разъединить шлифы, происходит их “заедание”. Оно, как правило, происходит в результате вдавливания внутреннего шлифа во внешний при работе в вакууме, длительной работы при повышенной температуре, действия шелочей, некоторых кислот, кремнийорганических соединений и ряда других причин.

Заевшие (неразъединяемые) шлифы можно открыть, используя следующие приемы:

1. осторожно постукивая деревянным предметом (молоточком) по шлифу;

2. механическим расшатыванием внутреннего шлифа;

3. нагреванием внешнего шлифа горячей водой, водяным паром или слабым пламенем спиртовки (керн по возможности должен оставаться холодным).

Кроме того, для разъединения “заевших” шлифов можно использовать раствор, состоящий из 10 массовых частей хлоралгидрата, 5 ч. глицерина, 3 ч. концентрированной хлороводородной кислоты и 5 ч. воды. Такой раствор наносят на шлиф или шлиф погружаю в раствор на некоторое время. Вакуумирование сосуда (прибора) облегчает проникновение раствора между притертыми поверхностями.

Рисунок 47. – Соединения на шлифах.

2.12.3. Пробки(англ. stopper)

Пробки служат не только для закупоривания химической посуды, но и для соединения отдельных частей прибора. Они бывают резиновыми, корковыми, пластмассовыми или стеклянными (рис. 48). Отверстия в пробках делают специальными металлическими сверлами, диаметр которых должен быть несколько меньше необходимого отверстия (сверлить начинают с узкого конца пробки).

Предпочтение отдают тем или другим пробкам в зависимости от применяемых веществ, условий и целей работы. Для соблюдения особой герметичности применяют резиновые пробки. Однако резиновые, корковые и пластмассовые пробки нестойки к действию высокой температуры и некоторых химических реагентов. Резиновые пробки и шланги неустойчивы к действию галогенов, сильных кислот и т. д. и набухают в присутствии органических растворителей. Для работ с хлором, бромоводородом, фосгеном, озоном и другими агрессивными веществами целесообразно применять пробки из поливинилхлорида или полиэтилена. Корковые пробки неплотные и поэтому не пригодны для работ в вакууме, кроме того, они очень чувствительны к действию химических веществ.

Следует отметить, что соединения на резиновых и корковых пробках по сравнению со стеклянными шлифами имеют меньшее значение.

Рисунок 48. – Пробки.

РЕЗИНОВЫЕ ТРУБКИ (ШЛАНГИ)

Шланги служат для соединения отдельных частей в приборах, установках, для подвода и отвода воды и газа. Однако резиновые трубки легко разрушаются при действии высокой температуры и некоторых газов (хлор, кислород, аммиак и др.). Поэтому часто применяют трубки из полиэтилена, которые устойчивы к действию большинства органических веществ и агрессивных сред, но при нагревании легко деформируются.

Читайте также:  Медикаментозные средства для лечения сосудов

Металлическое оборудование

В химических лабораториях широко применяют разнообразное металлическое оборудование, преимущественно стальное.

Штатив представляет собой стальной стержень, укрепленный на тяжелой стальной подставке, чаще всего имеющей форму четырехугольника. Обычно стержень укрепляют почти у самого края подставки. Бывают также штативы, у которых стальной стержень укреплен посередине подставки. В этом случае подставка имеет удлиненную форму.

Штативы служат для закрепления на них различных приборов с помощью лапок, колец и муфт (рис. 49, 53).

Рисунок 49. – Штатив с лапкой.

Лапки (рис. 50) бывают самых разнообразных форм и размеров. Они служат для закрепления холодильников, дефлегматоров, делительных воронок, колб, бюреток и т.д.

Внутренняя часть губ лапок обычно покрыта пробкой, чтобы при зажимании не раздавить стекла. Если же пробковая прослойка отсутствует, на губы лапки необходимо натянуть куски резиновой трубки. Закреплять прибор в лапке следует аккуратно, контролируя степень зажима.

Рисунок 50. – Лапка.

Муфты(рис. 51)используются для закрепления лапок и колец на штативе.

Рисунок 51. – Муфта.

Кольца(рис. 52)служат для закрепления на нужной высоте колб, стаканов и других приборов.

ОБРАТИТЕ ВНИМАНИЕ!!! При использовании круглодонных колб емкость 1 л и более, для уменьшения нагрузки на дно сосуда, при сборке установки их помещают на кольцо.

Рисунок 52. – Кольцо.

Рисунок 53. – Крепления на штативе.



Источник

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.

Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.

Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.

Основное уравнение гидростатики

P = P1 + ρgh

где P1 – это среднее давление на верхний торец призмы,

P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.

ρgh – сила тяжести (вес призмы).

Звучит уравнение так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости

Доказательство закона сообщающихся сосудов

Возвращаемся к разговору про сообщающиеся сосуды.

Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.

Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.

Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики

P = P1 + ρgh1

если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.

Это давление можно определить следующим образом

P = P2 + ρgh2

где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2

P1 + ρ1gh1 = P2 + ρ2gh2

В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем

ρ1h1 = ρ2h2

или

ρ1 / ρ2 = h2 / h1

т.е. закон сообщающихся сосудов состоит в следующем.

В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Свойства сообщающихся сосудов

Читайте также:  Физика сосуды с водой и маслом

Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.

Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.

Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.

В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.

Приборы основанные на законе сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.

Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.

В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.

Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.

Применение сообщающихся сосудов

Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.

Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.

Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.

Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.

В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.

Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.

В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.

Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.

Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.

Видео по теме

Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.

Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:

Источник