Какие бывают сосуды у растений
У этого термина существуют и другие значения, см. Сосуд.
Сосу́ды (трахеи) – проводящие элементы ксилемы, представляющие собой длинные полые трубки, образованные одним рядом клеток (члеников) со сквозными отверстиями (перфорациями) на поперечных стенках, по которым происходит массовое передвижение веществ.
Строение[править | править код]
Сосуды растений (трахеи) состоят из многих клеток, которые называются члениками сосуда. Членики расположены друг над другом, образуя длинную полую трубку. Поперечные перегородки между члениками растворяются, и возникают перфорации (сквозные отверстия). По таким полым трубкам растворы передвигаются значительно легче, чем по трахеидам. Каждый сосуд может состоять из огромного числа члеников, поэтому средняя длина сосудов – несколько сантиметров (иногда до 1 м и больше). Самые совершенные сосуды состоят из широких коротких члеников, диаметр которых превышает длину, а в перфорационных пластинках имеется одно крупное отверстие (простая перфорация). Сосуды менее специализированные состоят из более длинных и узких члеников, поперечные стенки между которыми наклонены. Перфорационные пластинки имеют несколько отверстий, расположенных друг над другом (лестничная перфорация) или в беспорядке (сетчатая перфорация).
Развитие сосуда[править | править код]
Членики сосуда образуются из продольного ряда клеток и вначале представлены расположенными друг над другом живыми паренхимными тонкостенными клетками, полость которых заполнена цитоплазмой с крупным ядром.
Первичная оболочка члеников сосудов состоит из микрофибриллярной фазы и матрикса, заполняющего промежутки между пространственно организованными микрофибриллами целлюлозы. В оболочке молодых члеников сосуда преобладают компоненты матрикса и вода. В связи с этим они могут удлиняться и разрастаться в ширину, протопласт вакуолизируется и занимает постенное положение.
Ещё до завершения роста начинается отложение слоёв вторичной оболочки. Каждый из слоёв отличается направлением ориентации микрофибрилл, характерным для данного типа элементов ксилемы. В тех участках первичной оболочки, где позднее образуются перфорации, вторичная оболочка не откладывается, но за счёт разбухания пектинового вещества межклеточной пластинки эти участки несколько утолщаются.
В самых ранних по времени образования трахеальных элементах вторичная оболочка может иметь форму колец, не связанных друг с другом (кольчатые сосуды). Позднее появляются трахеальные элементы со спиральными утолщениями, затем с лестничными утолщениями (сосуды с утолщениями, которые могут быть охарактеризованы как плотные спирали, витки которых связаны между собой).
Сосуды с относительно небольшими округлыми участками первичной оболочки, не прикрытыми изнутри вторичной оболочкой, называют пористыми.
Вторичная оболочка, а иногда и первичная, как правило, лигнифицируются, то есть пропитываются лигнином. Это придает им дополнительную прочность, но ограничивает возможности дальнейшего роста органа в длину. Одновременно с одревеснением боковых клеток сосуда идет процесс разрушения поперечных стенок между члениками: они ослизняются и постепенно исчезают. Так формируется перфорация. Вокруг перфорации всегда сохраняется остаток продырявленной стенки в виде ободка (перфорационный поясок).
После образования перфорации протопласт отмирает, его остатки в виде бородавчатого слоя выстилают стенки трахеальных элементов (трахеид и члеников сосудов). В результате последовательных структурных изменений формируется сплошная полая трубка сосуда, полость которой заполняется водой.
Механизм действия[править | править код]
Механизм поступления воды в трахеальные элементы и проведения её ко всем частям растения сложен. Основная масса воды поступает в растение через корневые волоски. В силу т. н. корневого давления вода проходит к водопроводящим элементам корня, поднимается к листьям и испаряется с их поверхности наружу через устьица (транспирация).
Сосуды заполнены водой. По мере того, как вода движется по сосудам, в столбе воды создаётся натяжение. Оно передаётся вниз по стеблю на всём пути от листа к корню благодаря сцеплению (когезии) молекул воды. Молекулы стремятся «прилипнуть» друг к другу в силу своей полярности, а затем удерживаются вместе за счёт водородных связей. Кроме того, они стремятся прилипнуть к стенкам сосудов под действием сил адгезии. Натяжение в сосудах ксилемы достигает такой силы, что может тянуть весь столб воды вверх, создавая массовый поток. При этом прочность стенкам обеспечивают целлюлоза и лигнин.
Литература[править | править код]
- Атлас по анатомии растений: учеб. пособие для вузов / Бавтуто Г. А., Ерёмин В. М., Жигар М. П.. – Мн.: Ураджай, 2001. – 146 с. – (Учеб. и учеб. пособия для вузов). – ISBN 985-04-0317-9.
Источник
Л. И. Лотова.
Большая советская энциклопедия. – М.: Советская энциклопедия. 1969-1978.
Смотреть что такое “Сосуды (у растений)” в других словарях:
Hillcrest International School – (HIS) is a Christian K 12 educational institution serving the international in and around Papua, Indonesia. The student population of the school currently numbers around 150 students, approximately 70 of which are in the high school… … Wikipedia
Journalist leads – are an Opening lead convention in the game of contract bridge. The method is deed to fix some problems with the standard opening lead system. It bears some resemblance to Rusinow leads but has striking differences.Not only do Journalist leads … Wikipedia
Ma (surname) – Ma (simplified: 马; traditional: 馬; pinyin: mǎ) is one of the most common Chinese family names. As of 2006, it ranks as the 14th most common Chinese surname in Mainland China and the most common surname within the Chinese Muslim ,… … Wikipedia
Cibulkova – Dominika Cibulková Nationalität: Slowakei Geburtstag: 6. Mai 1989 … Deutsch Wikipedia
Christoph von Oldenburg – (* 1504; † 4. August 1566) wurde als ein jüngerer Sohn des Grafen Johann V. von Oldenburg und Enkel Gerhard des Streitbaren geboren. Humanistisch gebildet und evangelisch wandte er sich, obgleich schon als Kind Domherr in Bremen, dem Militär zu… … Deutsch Wikipedia
Книги
- 1000 домашних настоек, бальзамов, мазей, компрессов, ингаляций от всех болезней, . 1000 рецептов натуральных средств от всех болезней: настойки, мази, компрессы, бальзамы, отвары, примочки, ванночки из лекарственных растений. Природа щедро делится с нами своей силой и… Подробнее Купить за 474 руб
- 1000 домашних настоек, бальзамов, мазей, компресс, . 1000 рецептов натуральных средств от всех болезней: настойки, мази, компрессы, бальзамы, отвары, примочки, ванночки из лекарственных растений. Природа щедро делится с нами своей силой и… Подробнее Купить за 291 руб
- Лечим сердце и сосуды, Сергеева Галина Константиновна. Все наши читатели знают об эффективности санаторно-курортного лечения, в том числе при заболеваниях крови, сердца и сосудов. Это обусловлено тем, что в санаториях применяются в комплексе… Подробнее Купить за 134 руб
Другие книги по запросу «Сосуды (у растений)» >>
Источник
«В природе нет ничего бесполезного» – Мишель де Монтень
Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту. И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.
Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая микропрепараты.
Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку. Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.
Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты обмена веществ из них. Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям (восходящий ток) и от листьев к корням (нисходящий ток).
Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины). От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).
Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.
В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.
Ксилема (древесина)
Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры, представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.
- Трахеиды
Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую, спиралевидную, кольчатую.
- Сосуды
Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.
Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению он растягивается и обеспечивает ток воды и минеральных солей.
- Древесинные волокна (либриформ)
Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной клеточной стенкой, которая придает ксилеме механическую прочность.
- Паренхимные клетки (древесинная паренхима)
Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.
Флоэма (луб)
Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания, подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.
Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.
Разберемся с компонентами, которые входят в состав флоэмы:
- Ситовидные элементы
Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂
Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность ситовидных трубок.
- Склеренхимные элементы (лубяные волокна)
Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.
- Паренхимные элементы (лубяная паренхима)
Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.
По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.
Ниже вы найдете продольный срез тканей растения, изучите его.
Жилка
Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия, располагаются в центральном осевом цилиндре. Существует два вида жилок:
- Открытые
Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно обнаружить во всех органах двудольных растений.
- Закрытые
Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.
Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань – склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.
Как вода поднимается от корней к листьям, против силы тяжести?
Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и присасывающего листового.
- Корневое давление
Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться в сосуды.
- Транспирация
Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости. Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Определение сосудистых растений
Сосудистый растение является одним из ряда растений со специализированными сосудистая ткань, Два типа сосудистых ткань, ксилема а также флоэма, несут ответственность за перемещение воды, минералов и продуктов фотосинтез по всему заводу. В отличие от несосудистого растения, сосудистое растение может расти намного больше. Сосудистая ткань внутри обеспечивает транспортировку воды на большую высоту, позволяя сосудистому растению расти вверх, чтобы поймать солнце.
Структура сосудистых растений
Внутри сосудистого растения структура сильно отличается от структуры несосудистого растения. У несосудистых растений дифференциация между клетками практически отсутствует. У сосудистых растений специализированные сосудистые ткани располагаются по уникальным рисункам, в зависимости от деления и вид сосудистое растение принадлежит.
Ксилема, состоящая в основном из структурного белка лигнина и мертвых клеток, специализируется на транспортировке воды и минералов от корней к листьям. Сосудистое растение делает это, создавая давление на воду по нескольким направлениям. В корнях вода впитывается в ткани. Вода течет в ксилему и создает восходящее давление. На листьях вода используется и испаряется из устьице, Говорят, что эти маленькие поры проходят, что тянет вверх столб воды в ксилеме. Через действия адгезия и сплоченность, вода движется вверх через ксилему, как напиток через соломинку. Этот процесс можно увидеть ниже.
В листьях происходит фотосинтез. Сосудистое растение, как низшие растения и водоросли Используйте тот же процесс, чтобы извлечь энергию от солнца и сохранить ее в связях глюкозы. Этот сахар превращается в другие формы и должен транспортироваться в части растения с невозможностью фотосинтеза, такие как стебель и корни. Эта флора специально разработана для этой цели. В отличие от ксилемы, флоэма состоит из частично живых клеток, которые помогают облегчить транспорт сахаров через транспортные белки, найденные в клетка Мембраны. Эта флоэма также связана с ксилемой и может добавлять воду, чтобы помочь разбавить и переместить сахар. Коммерчески собранный, это известно как сок или сироп, такой как кленовый сироп.
Жизненный цикл сосудистого растения
Сосудистые растения, как и все растения, демонстрируют смена поколений, Это означает, что есть две формы растения, спорофит и гаметофит, Спорофит, а диплоид организм, проходит через мейоз производить гаплоидный Спор. Спора перерастает в новый организм – гаметофит. Гаметофит отвечает за образование гамет, способных слиться во время половое размножение.
Эти гаметы, сперма и яйцеклетка, сливаются вместе, образуя зигота, которое является новым поколением диплоидных спорофитов. У некоторых растений эта зигота будет развиваться непосредственно в новый организм. В других зигота развивается в семя, которое рассеяно и должно иметь период покоя или некоторый сигнал активации, чтобы начать расти. Сосудистое растение, которое ближе к мхам и несосудистым растениям, с большей вероятностью будет иметь независимые чередующиеся поколения. Посевные растения, как правило, имеют сильно сниженный гаметофит, который, как правило, полностью зависит от спорофита и живет в нем. Различие едва заметно между этими двумя организмами, кроме количества ДНК, которое они несут в своих клетках (гаплоид против диплоида) и процессов клеточного деления, которые они используют.
Классификация сосудистых растений
Сосудистые растения представляют собой эмбриофиты, которые являются большими клады или родственная группа, состоящая как из несосудистых, так и из сосудистых растений. Эмбриофиты далее разбиваются на бриофиты, включая мхов, печеночники и несосудистые растения, и Tracheophyta. Поскольку трахея у людей является проходом для воздуха, термин трахеофит относится к сосудистой ткани сосудистых растений.
Трахеофиты далее делятся на отделы. Подразделения отличаются главным образом тем, как функционируют их споры и гаметофиты. У папоротников и клубных мхов гаметофит становится свободно живущим поколением. У голосеменных (хвойных) и покрытосеменных (цветковых растений) гаметофит зависит от спорофита. Гаметы, развитые внутри, становятся семенем, формируя следующее поколение спорофитов. В то время как каждое сосудистое растение имеет чередование поколений с доминирующим спорофитом, они различаются по способу распределения спор и семян.
Примеры сосудистых растений
Ежегодный Vs. круглогодичный
Некоторые растения, однолетние растения, завершают свой жизненный цикл в течение одного года. Если бы вы купили однолетнее растение в магазине, посадили его в своем саду и собрали все сброшенные семена, растение не вернулось бы в следующем году. Ежегодно, как правило, травянистый Имеется в виду их стебли и корни и не очень структурированные и жесткие. Хотя растения могут стоять высокими, это в основном связано с тургор давление на клеточных стенках растения.
Многолетнее растение немного отличается. Хотя это может быть и травянистое растение, оно вернется на несколько лет, даже если вы соберете все семена. В течение зимы сосудистое растение способно хранить сахар в корнях и полностью избегать замерзания. Весной растение может возобновить рост и попытаться еще раз произвести потомство. Хотя методы размножения отражают миллионы лет эволюции, они не отражают сосудистые растения по сравнению с несосудистыми.
Монокот против двудольных
В пределах покрытосеменных растений или цветковых растений существует огромное деление. В то время как однодольные и двудольные растения являются сосудистыми растениями, они различаются по способу формирования их семян и способу их роста. В однодольные Выращивание происходит под почвой, так как отдельные листья начинаются от корней и растут вверх. Кукуруза является однодольным, как и многие виды трав, включая пшеницу и ячмень. На других посевных растениях, таких как бобы и горох, есть два листа семядолей, которые делают их двудольными. Сосудистую ткань однодольных можно увидеть справа на изображении ниже.
В двудольным точка роста находится над почвой, и это приводит к тому, что растения разветвляются в нескольких направлениях. Таким образом, сосудистая ткань в двудольном ветвь разветвлена, где в однодольном она идет параллельно. Обратите внимание, как сосудистая ткань у этих растений создает организованные пучки. Этот шаблон создает легкие возможности ветвления. Эти изменения в сосудистой ткани представляют различные способы формирования листьев для сбора света, наблюдаемого в двух типах сосудистых растений.
викторина
1. Что из перечисленного НЕ является сосудистым растением?A. Красное деревоB. Мох C. Мир Лилли
Ответ на вопрос № 1
В верно. Мох – это несосудистое растение, то есть оно не имеет дифференцированных сосудистых тканей. Мхи могут быть многолетними, поскольку они могут бездействовать в течение зимних месяцев, чтобы выжить. Они не могут, однако, расти очень высокими, потому что они ограничены в распределении и использовании воды.
2. Какова цель ксилемы в сосудистом растении?A. Ксилем несет сахар вокруг растенияB. Ксилем движет воду от корней к побегамC. Ксилем переносит продукты фотосинтеза
Ответ на вопрос № 2
В верно. Первый и третий ответы одинаковы, поскольку продукты фотосинтеза – это сахара. Флоема переносит эти продукты вокруг растения, в то время как ксилема перемещает воду из земли в и из листьев. Это обеспечивает воду, давление тургора и источник питательных веществ.
3. Клубные мхи – это уникальный организм. Как и мхи, они не создают семя и используют споры для размножения. В отличие от мхов, они имеют различимые ткани, которые транспортируют воду по всему растению. Клубничные мхи могут расти значительно выше обычного мха. Какие из следующих утверждений верно?A. Клаб-Мосс – это сосудистое растениеB. Клаб-Мосс – несосудистое растениеC. Клаб-мох не сосудистый и не сосудистый
Ответ на вопрос № 3
верно. Сосудистое растение, независимо от жизненного цикла, определяется различимыми тканями сосудов. Это позволяет булаву-мху перемещать воду на гораздо большую высоту, чем обычный мох, увеличивая их способность поглощать солнечный свет.
Ссылки
- Hartwell, L.H., Hood, L., Goldberg, M.L., Reynolds, A.E. & Silver, L.M. (2011). генетика : От генов к геномам Бостон: Макгроу Хилл.
- Kaiser, M.J., Attrill, M.J., Jennings, S., Thomas, D.N., Barnes, D.K., Brierley, A.S. & Hiddink, J.G. (2011). морской экология : Процессы, системы и воздействия. Нью-Йорк: издательство Оксфордского университета.
- McMahon, M.J., Kofranek, A.M. & Rubatzky, V.E. (2011). Наука о растениях: рост, развитие и использование культурных растений (5-е изд.). Бостон: Прентинс Холл.
Источник