Какие силы действуют на жидкость во вращающемся сосуде

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная поверхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.11).

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и w2r. Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Рис. 2.11

Учитывая, что сила j нормальна к свободной поверхности, получим

отсюда

или после интегрирования

В точке пересечения свободной поверхности с осью вращения C = h, поэтому окончательно будем иметь

(2.10)

т. е. свободная поверхность жидкости является параболоидом вращения.

Максимальную высоту подъема жидкости можно определить исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.

На практике очень часто приходится иметь дело с вращением сосуда, заполненного жидкостью, вокруг горизонтальной оси. При этом угловая скорость w столь велика, что сила тяжести на порядок меньше центробежных сил, и ее действие можно не учитывать. Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементарного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.12). На выделенный элемент жидкости действуют силы давления и центробежная сила.

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp, получим следующее уравнение равновесия выделенного объема в направлении радиуса

или

Рис. 2.12

После интегрирования

Постоянную C найдем из условия, что при r = r0 p = p0.

Следовательно

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:

(2.11)

Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

а затем следует выполнить интегрирование в требуемых пределах.

При большой скорости вращения жидкости получается значительная суммарная сила давления на стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.



Источник

В зависимости от характера действующих массовых сил поверхность равного давления в жидкости, как и свободная поверхность, может принимать различную форму. Ниже рассматриваются некоторые случаи равновесия жидкости в движущихся сосудах.

1. Жидкость находится в сосуде, который движется в горизонтальном направлении с постоянным ускорением ±а (знак плюс соответствует ускорению сосуда, знак минус – замедлению ) (см. рисунок).

Какие силы действуют на жидкость во вращающемся сосуде

В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и инерции. Поверхность равного давления является наклонной плоскостью. Давление в любой точке жидкости определяется по формуле

p = p0 + ρ·(g·z ± a·x),

Для свободной поверхности жидкости, когда р=p0, уравнение принимает вид:

g·z = ± a·x

или

z/x = tg α = ± a/g,

где α – угол наклона свободной поверхности жидкости к горизонту.

Последнее приведенное выше выражение позволяет определять (при условии, чтобы жидкость не переливалась через задний борт сосуда длиной l) высоту борта h при заданном значении а или предельное ускорение а при заданном значении h.

Если сосуд движется равномерно (а = 0), уравнение приводим к виду:

p = p0 + ρ·g·z = p0·γ

В этом случае поверхность равного давления представляет горизонтальную плоскость.

2. Жидкость находится в открытом цилиндрическом сосуде, который вращается вокруг вертикальной оси с постоянной угловой скоростью ω.

Какие силы действуют на жидкость во вращающемся сосуде

В данном случае жидкость подвержена воздействию не только поверхностных сил, но также массовых сил тяжести и центробежной.

Поверхность равного давления представляет параболоид вращения. Распределение давления в жидкости по глубине определяется выражением:

p = p0 + γ·((ω2·r2)/(2·g) – z)

Для любой точки свободной поверхности жидкости, когда p = p0, уравнение принимает вид:

z = (ω2·r2)/(2·g) = u2/(2·g),

где окружная скорость u = ω·r (r – радиус вращения точки).

Высота параболоида вращения:

h = ω2·r20/(2·g),

где r0 – радиус цилиндрического сосуда.

Сила давления жидкости на дно сосуда:

P = γ·π·r20·h0 = γ·π·r20·(h1 + h/2),

где h0 – начальная глубина жидкости в сосуде до момента его вращения.

Давление на боковую стенку сосуда изменяется по линейному закону. Эпюра давления представляет прямоугольный треугольник ACD с высотой h1 + h и основанием γ·(h1 + h).

3. Жидкость находится в цилиндрическом сосуде, который вращается вокруг горизонтальной оси с постоянной угловой скоростью ω.

В данном случае жидкость также подвержена воздействию массовых сил тяжести и центробежной.

Поверхности равного давления представляют концентрически расположенные боковые поверхности цилиндров, оси которых горизонтальны и смещены относительно оси оу на величину эксцентриситета e = g/ω2 (см. рисунок а).

Какие силы действуют на жидкость во вращающемся сосуде

При большом числе оборотов сосуда влияние силы тяжести по сравнению с влиянием центробежной силы становится незначительным, и, следовательно, величиной эксцентриситета е можно пренебречь. Тогда поверхности равного давления становятся концентрическими цилиндрами, оси которых совпадают с осью сосуда (см. рисунок б).

Распределение давления по глубине жидкости определяется выражением:

p = p0 + γ·ω2·(r2 – r20)/(2·g)

где p и p0 – соответственно давления в точках цилиндрических поверхностей с радиусами r и r0.

Данное уравнение справедливо и тогда, когда сосуд радиусом r лишь частично заполнен жидкостью. Свободная поверхность жидкости в этом случае также будет цилиндрической с радиусом r0 и давлением во всех ее точках р0.

Как видно из последнего уравнения, закон распределения давления по радиусу является параболическим. Эпюра давления представленная на рисунке в. Такие приближенные решения могут применяться при любом положении оси вращения сосуда, однако при условии большого числа его оборотов.

Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.

Источник

Сегодня я заварил себе чай и задумался

Сегодня утром я задумался, пока размешивал два кубика сахара в чашке с только что заваренным чаем. Задумался о форме жидкости, которую она принимает при вращении. Безусловно, все представляют себе что будет, если очень быстро начать размешивать сахар в чашке с чаем. Мне захотелось рассмотреть этот банальный и привычный процесс подробнее и попытаться рассказать Вам немного интересного из физики окружающих нас в быту явлений.

Идея эксперимента

Давайте представим, что мы имеем некоторую цилиндрическую тару, в которой находится некоторая жидкость. Вращаться жидкость можно заставить, как минимум, двумя очевидными способами: размешать её каким-нибудь предметом или начать вращать цилиндрическую тару, что, благодаря силам трения между жидкостью и поверхностью сосуда, приведет к вращению жидкости, увлекаемой содержащим её вращающимся сосудам.

Физическая модель

Остановимся на втором варианте. Итак, у нас есть вращающийся с постоянной циклической частотой сосуд, в котором при динамическом равновесии с постоянной циклической частотой вращается жидкость в том же направлении.

Вырежем из всей жидкости элементарный бесконечно малый объем около поверхности и рассмотрим какие силы на него действуют. В силу симметрии задачи, будем ориентироваться на цилиндрические координаты, что заметно упростит расчеты.

Качественный расчет формы поверхности

Запишем второй закон Ньютона для элементарного кусочка объема жидкости:

К примеру, после размешивания ложкой сахара в чашке только что заваренного чая, жидкость вращается вокруг оси симметрии, отсюда наш элементарный кусочек объема имеет центростремительное ускорение. Поэтому спроецируем наш закон Ньютона на ось, совпадающую с радиусом-вектором от элементарного объема до оси симметрии. Не будем учитывать вязкость и поверхностное натяжение. Сила, сообщающая центростремительное ускорение (в правой части нашего закона движения) возникнет из-за разности давлений столбов жидкости, что можно увидеть на увеличенной части первого рисунка.

Таким образом, у нас получится следующее выражение:

, где , а та самая сила определится как , где площадью эффективного сечения обозначена та площадь нашего элементарного объема, на которую действует разница давлений столбов жидкости .

Получаем силу

Масса нашего элемента объема определяется по знакомой всем формуле , а сам объем будет равен (элементарный объем в цилиндрических координатах).

В итоге, 2 закон Ньютона для нашей маленькой задачки расписывается в следующее выражение:

После небольших сокращений и преобразований получаем:

Теперь проинтегрируем обе части выражения, используя неопределенные интегралы:

Детальный расчет формы поверхности

Теперь мы получили вполне ясную зависимость для формы поверхности и с уверенностью можем сказать, что это параболоид. Но нам неизвестна постоянная величина . Давайте её определим для полного понимания физики процесса.

Так как объем жидкости не меняется (мы считаем, что не пролили ни капли, пока размешивали наш чай ツ), то запишем объемы до вращения и во время вращения с постоянной циклической частотой.

До вращения:

, где – это высота жидкости в цилиндрической поверхности в спокойном состоянии (вращения нет).

Во время вращения:

Данные объемы равны, поэтому:

Отсюда выражается ранее неизвестная постоянная:

И окончательное уравнение формы поверхности вращающейся жидкости имеет вид:

или преобразовав

Некоторые заметки

Хотелось бы обратить внимание на то, что форма поверхности зависит от частоты вращения, ускорения свободного падения, геометрических параметров сосуда, первоначального объема жидкости, но не зависит от плотности жидкости. Это выражение мне показалось довольно интересным, так как с его помощью можно легко смоделировать примерное расположение жидкости внутри вращающегося вокруг своей оси симметрии цилиндрического сосуда. Для этого можно воспользоваться MathCAD’ом и построить несколько графиков.

Графическое представление результатов расчета

Возьмем вполне реальные параметры системы, соизмеримые с размерами чашки или стакана.

Радиус цилиндрической поверхности:

Высота жидкости в цилиндрической поверхности без вращения:

Ускорение свободного падения:

Циклическая частота вращения цилиндрической поверхности:

(Все значения этих величин заданы в системе Си)

Далее перепишем нашу функцию для её отображения в MathCAD.

Для 2D отображения сечения:

Для 3D отображения поверхности:

В качестве изменяющегося параметра будем менять циклическую частоту вращения . Результаты можно наблюдать на рисунках ниже:

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

Выводы

Видно, что если циклическая частота превысит значение , то мы увидим дно вращающегося цилиндрического сосуда, и, начиная с этой частоты, жидкость будет плавно «переходить» на стенки сосуда, всё сильнее оголяя дно. Очевидно, что при очень больших частотах вся жидкость растечется по стенкам сосуда. Теперь мы знаем все параметры такой жидкости. Зная её уравнение, не составит большого труда рассчитать толщину слоя жидкости на стенке сосуда на определенной высоте при определенной частоте.

upd. Отдельно хотелось бы подчеркнуть те противоречащие друг другу допущения, которые были приняты при рассмотрении задачи:

1. Считалось что, жидкость вращается благодаря вращению сосуда, который её содержит. Это может быть только при учете внутреннего трения, вязкости и поверхностного натяжения.

2. Но при выводе формы поверхности эти явления не учитываются для того, чтобы упростить решение и показать только качественный результаты моделирования. Т.е. решение немного противоречит описываемой изначально модели. Учет всех явлений, включая нелинейность процесса при высоких частотах, настолько бы усложнил задачу, что её вряд ли можно было бы решить аналитически и показать примерную и понятную модель для человека, который не связан с математикой/физикой.

3. Цель состоялась в том, чтобы показать лишь очень приближенное и самое простое решение, включающее в себя ряд допущений.

Источник

ВикиЧтение

Гидравлика

Бабаев М А

3. Силы, действующие в жидкости

Жидкости делятся на покоящиеся и движущиеся.

Здесь же рассмотрим силы, которые действуют на жидкость и вне ее в общем случае.

Сами эти силы можно разделить на две группы.

1. Силы массовые. По-другому эти силы называют силами, распределенными по массе: на каждую частицу с массой ?M = ?W действует сила ?F, в зависимости от ее массы.

Пусть объем ?W содержит в себе точку А. Тогда в точке А:

где FА – плотность силы в элементарном объеме.

Плотность массовой силы – векторная величина, отнесена к единичному объему ?W; ее можно проецировать по осям координат и получить: Fx, Fy, Fz. То есть плотность массовой силы ведет себя, как массовая сила.

Примерами этих сил можно назвать силы тяжести, инерции (кориолисова и переносная силы инерции), электромагнитные силы.

Однако в гидравлике, кроме особых случаев, электромагнитные силы не рассматривают.

2. Поверхностные силы. Таковыми называют силы, которые действуют на элементарную поверхность ?w, которая может находиться как на поверхности, так и внутри жидкости; на поверхности, произвольно проведенной внутри жидкости.

Таковыми считают силы: силы давления которые составляют нормаль к поверхности; силы трения которые являются касательными к поверхности.

Если по аналогии (1) определить плотность этих сил, то:

нормальное напряжение в точке А:

касательное напряжение в точке А:

И массовые, и поверхностные силы могут быть внешними, которые действуют извне и приложены к какой-то частице или каждому элементу жидкости; внутренними, которые являются парными и их сумма равна нулю.

Читайте также

Глава IX. Увеличение держащей силы

Глава IX. Увеличение держащей силы Как «прописал» доктор Хейн На первый взгляд изобретение капитана Холла – последний завершающий этап в многовековой истории якоря. Что еще можно придумать, если и так конструкция доведена почти до совершенства? Правда, держащая сила

14. “Боевые силы Черноморского флота можно признать достаточными”

14. “Боевые силы Черноморского флота можно признать достаточными” В 1890 г. Практическая эскадра провела в плаваниях четыре месяца. С вступлением кораблей в вооруженный резерв готовность флота к отражению нападения и к бою резко снижалась. Это хорошо понимали в Главном

2. Основные свойства жидкости

2. Основные свойства жидкости Плотность жидкости.Если рассмотреть произвольный объем жидкости W, то он имеет массу M.Если жидкость однородна, то есть если во всех направлениях ее свойства одинаковы, то плотность будет равна где M – масса жидкости.Если требуется узнать r в

5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести

5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести Это равновесие описывается уравнением, которое называется основным уравнением гидростатики.Для единицы массы покоящейся жидкости Для любых двух точек одного и того же объема, то Полученные

9. Определение силы давления покоящейся жидкости на плоские поверхности. Центр давления

9. Определение силы давления покоящейся жидкости на плоские поверхности. Центр давления Для того, чтобы определить силу давления, будем рассматривать жидкость, которая находится в покое относительно Земли. Если выбрать в жидкости произвольную горизонтальную площадь ?,

10. Определение силы давления в расчетах гидротехнических сооружений

10. Определение силы давления в расчетах гидротехнических сооружений При расчетах в гидротехнике интерес представляет сила избыточного давления Р, при:р0 = ратм,где р0 – давление, приложенное к центру тяжести.Говоря о силе, будем иметь в виду силу, приложенную в центре

19. Уравнение неразрывности жидкости

19. Уравнение неразрывности жидкости Довольно часто при решении задач приходится определять неизвестные функции типа:1) р = р (х, у, z, t) – давление;2) nx(х, у, z, t), ny(х, у, z, t), nz(х, у, z, t) – проекции скорости на оси координат х, у, z;3) ? (х, у, z, t) – плотность жидкости.Эти неизвестные,

9 Увеличение держащей силы

9 Увеличение держащей силы Как «прописал» доктор Хейн На первый взгляд изобретение капитана Холла – последний завершающий этап в многовековой истории якоря. Что еще можно придумать, если и так конструкция доведена почти до совершенства? Правда, держащая сила втяжных

СКОВАННЫЕ СИЛЫ

СКОВАННЫЕ СИЛЫ Промышленные города дореволюционной России тонули в море деревень. Россия была страной аграрной.И пейзаж ее чаще был сельскохозяйственный, аграрный: поля и деревни, поля и деревни…Уездный город: домики в три окошка, тропинки на улицах, заросших травой,

Глава VI. Прочность судового корпуса и его конструкция § 24. Силы, действующие на корпус плавающего судна

Глава VI. Прочность судового корпуса и его конструкция § 24. Силы, действующие на корпус плавающего судна На корпус плавающего по воде судна действуют постоянные и временные силы. К постоянным относятся статические силы, такие, как вес судна и давление воды на погруженную

О добавлении охлаждающей жидкости

О добавлении охлаждающей жидкости Если при значительном охлаждении автомобиля (-30 °C) уровень ОЖ в расширительном бачке существенно понизится, то не торопитесь доливать. Включите УОПД, запустите мотор, прогрейте его, зарядите ТА. Если после этого уровень ОЖ будет

IV. ЧЕЛОВЕК И СИЛЫ ПРИРОДЫ

IV. ЧЕЛОВЕК И СИЛЫ ПРИРОДЫ 1. Цветные слуги человека.Выло время, когда победители после войны забирали побежденных в плен и заставляли их работать на себя. Было время, когда помещики имели полную власть над крепостными, распоряжаясь их трудом, имуществом и даже жизнью. Выло

Силы, действующие на движущийся автомобиль

Силы, действующие на движущийся автомобиль Современный автомобиль легко приспосабливается к условиям движения, он то медленно передвигается по грязной и скользкой дороге, то поднимается в гору, то мчится по автобану. При этом колеса автомобиля могут вращаться с разной

Эталон силы света

Эталон силы света Свет – это электромагнитное излучение в диапазоне непосредственного восприятия человеком. Поэтому в технике и, соответственно, метрологии, ему уделяется большее внимание. Световых единиц, как известно, четыре – световой поток, сила света, светимость и

6.1.3. Рабочие и специальные жидкости

6.1.3. Рабочие и специальные жидкости В зависимости от назначения и свойств жидкости делятся на охлаждающие, тормозные, амортизационные и пусковые.Гидравлические масла работают при больших перепадах температур (от -40 до +80 °C), давлениях 10-15 МПа, скоростях скольжения до

1.2. Опасные и вредные производственные факторы, действующие на работников

1.2. Опасные и вредные производственные факторы, действующие на работников Вопрос 6. Какие факторы являются основными физически опасными и вредными производственными факторами? Ответ. Являются следующие факторы:движущиеся машины и механизмы, подвижные части

Источник