Клетки в кровеносных сосудах

Клетки в кровеносных сосудах thumbnail

У этого термина существуют и другие значения, см. Сосуд.

Кровеносные сосуды тела человека (схема)

Кровено́сные сосу́ды – эластичные трубчатые образования в теле животных и человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, капиллярам, и от них к сердцу – по венулам и венам.

Классификация кровеносных сосудов

Среди сосудов кровеносной системы различают артерии, вены и сосуды системы микроциркуляторного русла; последние осуществляют взаимосвязь между артериями и венами и включают, в свою очередь, артериолы, капилляры, венулы и артериоло-венулярные анастомозы[1]. Сосуды разных типов отличаются не только по своему диаметру, но также по тканевому составу и функциональным особенностям[2].

  • Артерии – сосуды, по которым кровь движется от сердца. Артерии имеют толстые стенки, в которых содержатся мышечные волокна, а также коллагеновые и эластические волокна. Они очень эластичные и могут сужаться или расширяться – в зависимости от количества перекачиваемой сердцем крови. Текущая по артериям кровь насыщена кислородом (исключение составляет лёгочная артерия, по которой течёт венозная кровь)[3][4].
  • Артериолы – мелкие артерии (диаметром менее 300 мкм), по току крови непосредственно предшествующие капиллярам. В их сосудистой стенке преобладают гладкие мышечные волокна, благодаря которым артериолы могут менять величину своего просвета и, таким образом, сопротивление. Самые мелкие артериолы – прекапиллярные артериолы, или прекапилляры – сохраняют в стенках лишь единичные гладкомышечные клетки[5][6].
  • Капилляры – это мельчайшие кровеносные сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку. Диаметр их просвета колеблется от 3 до 11 мкм, а общее число в организме человека – около 40 млрд. Через стенку капилляров (уже не содержащую гладкомышечных клеток) осуществляется отдача питательных веществ и кислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь[7][8].
  • Венулы – мелкие кровеносные сосуды, обеспечивающие в большом круге отток обеднённой кислородом и насыщенной продуктами жизнедеятельности крови из капилляров в вены. Делятся на примыкающие к капиллярам посткапиллярные венулы (посткапилляры) диаметром от 8 до 30 мкм и собирательные венулы диаметром 30-50 мкм, впадающие в вены[9].
  • Вены – это сосуды, по которым кровь движется к сердцу. По мере укрупнения вен их число становится всё меньше, и в конце концов остаются лишь две – верхняя и нижняя полые вены, впадающие в правое предсердие. Стенки вен менее толстые, чем стенки артерий, и содержат соответственно меньше мышечных волокон и эластических элементов[10][11].
  • Артериоло-венулярные анастомозы – сосуды, обеспечивающие непосредственный переток крови из артериолы в венулу – в обход капиллярного русла. Содержат в своих стенках хорошо выраженный слой гладкомышечных клеток, регулирующих такой переток[12][13].

Строение кровеносных сосудов (на примере аорты)

Строение аорты: 1. эластическая мембрана (внешняя оболочка или Tunica externa, 2. мышечная оболочка (Tunica ), 3. внутренняя оболочка (Tunica intima)

Строение аорты: 1. эластическая мембрана (внешняя оболочка или Tunica externa, 2. мышечная оболочка (Tunica ), 3. внутренняя оболочка (Tunica intima)

Этот пример описывает строение артериального сосуда. Строение других типов сосудов может отличаться от описанного ниже. Подробнее см. соответствующие статьи.

Основная статья: Аорта

Аорта выстлана изнутри эндотелием, который вместе с подлежащим слоем рыхлой соединительной ткани (субэндотелием) образует внутреннюю оболочку (лат. tunica intima). Средняя оболочка состоит из большого количества эластических окончатых мембран. Также в ней присутствует небольшое количество гладких миоцитов. Поверх средней оболочки лежит рыхлая волокнистая соединительная ткань с большим содержанием эластических и коллагеновых волокон (лат. tunica adventitia).

Заболевания сосудов

  • Атеросклероз
  • Болезнь Бюргера
  • Варикозное расширение вен
  • Раны
  • Тромбофлебит

См. также

  • Вазоконстрикция
  • Гемодинамика
  • Реология
  • Формула Пуазёйля

Примечания

  1. ↑ Сапин и Билич, т. 2, 2009, с. 338-340, 344.
  2. ↑ Гистология, цитология и эмбриология, 2004, с. 386-387.
  3. ↑ Сапин и Билич, т. 2, 2009, с. 338, 340-343.
  4. ↑ Гистология, цитология и эмбриология, 2004, с. 386, 391.
  5. ↑ Сапин и Билич, т. 2, 2009, с. 340, 344.
  6. ↑ Гистология, цитология и эмбриология, 2004, с. 394.
  7. ↑ Сапин и Билич, т. 2, 2009, с. 344-347.
  8. ↑ Гистология, цитология и эмбриология, 2004, с. 399-400.
  9. ↑ Сапин и Билич, т. 2, 2009, с. 345.
  10. ↑ Сапин и Билич, т. 2, 2009, с. 338, 354.
  11. ↑ Гистология, цитология и эмбриология, 2004, с. 402-403.
  12. ↑ Сапин и Билич, т. 2, 2009, с. 347.
  13. ↑ Гистология, цитология и эмбриология, 2004, с. 400.

Литература

  • Гистология, цитология и эмбриология. 6-е изд / Под ред. Ю. И. Афанасьева, С. Л. Кузнецова, H. А. Юриной. – М.: Медицина, 2004. – 768 с. – ISBN 5-225-04858-7.
  • Сапин М. Р., Билич Г. Л. . Анатомия человека: в 3-х тт. Т. 2. 3-е изд. – М.: ГЭОТАР-Медиа, 2009. – 496 с. – ISBN 978-5-9704-1373-9.
Читайте также:  Красный сосуд в глазу как избавится

Ссылки

  • Кровеносные сосуды
  • Схема кровеносных сосудов человека

Органы и ткани, образующиеся из зародышевых листков

Эктодерма
  • Эпидермис кожи
  • Ногти
  • Волосы
  • Потовые железы
  • Вся нервная система: головной мозг, спинной мозг, нервное окончание, нервы
  • Рецепторные клетки органов чувств
  • Хрусталик глаза
  • Зубная эмаль
Энтодерма
  • Эпителий желудка, пищевода, кишечника, трахеи, бронхов, лёгких, желчного пузыря, мочевого пузыря, мочеиспускательного канала
  • Печень
  • Поджелудочная железа
  • Щитовидная и паращитовидная железы
  • Хорда
Мезодерма
  • Гладкая мускулатура всех органов
  • Скелетная мускулатура
  • Сердечная мышца
  • Соединительная ткань
  • Кости
  • Хрящи
  • Дентин зубов
  • Кровь
  • Кровеносные сосуды
  • Брыжейка
  • Почки
  • Семенники и яичники

Эта страница в последний раз была отредактирована 19 января 2021 в 09:01.

Источник

Благодаря сети мельчайших кровеносных сосудов каждая клетка организма получает необходимые ей кислород и питательные вещества.

Капилляры – мельчайшие кровеносные сосуды, пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.

Артериолы и венулы

Капилляры – самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7-8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, – это артериолы, а выносящие кровь мелкие вены – венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию – удерживают имеющуюся в органе кровь.

Шунты

Есть сосуды, напрямую связывающие артериолы и венулы, – артериоловенулярные анастомозы (шунты). По ним кровь сбрасывается из артериального русла в венозное, минуя капиллярные сети. Значение артериоловенулярных анастомозов возрастает в неработающем, отдыхающем органе, когда нет необходимости в усиленном обмене веществ и большая часть поступившей крови без захода в капиллярные сети направляется дальше.

Микроциркуляция

Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды – микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения – в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000-9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).

Строение капилляра

Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное – из тканей в кровь – поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра – не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.

История изучения капиллярной сети

Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.

Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.

Читайте также:  Асд при атеросклерозе сосудов

Особенности строения микроциркуляторного русла

Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах – диаметр их составляет 4,5-6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки – 7-11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20-30 мкм.

Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки – около 2500-3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах – около 1400, а в коже всего 40 капилляров.

В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15-17 годам).

Функциональные характеристики капиллярной сети

Общая емкость капиллярного русла составляет 25-30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20-35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При физических нагрузках в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах – необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.

Особенности кровотока в капиллярах

Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80-130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.

При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25-50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.

Регулирование микроциркуляции крови

Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10-100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови – кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей – крупные артериолы и венулы.

Читайте также:  Препараты и витамины при ломкости сосудов

Диагностика расстройств микроциркуляции крови

Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.

Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств – стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями – выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.

Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.

Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН

Источник

, . , : , , , .

– , , . . .

( ) ( , , ) ( ) . – , .

( ) – – . ( ). .

– . , 70-80% .

– , .

, . : ( ) , . . – , , :

Q – ; 1-2 – , ; R – . , : , , , . , . , 1 , . , , . , , , , , . ., .

. , . ? , . . , . . , , , , . .

, , .

, , ( ) . , .

: , . , . 3 . 16.

Клетки в кровеносных сосудах

3.

Клетки в кровеносных сосудах

. 16. . – ; – ; – ; 1 – ; 2 – ; 3 – ; 4 – ; 5 – ; 6 – ; 7 – ; 8 –

– – (1 = 1 /2). , , .

: ; , . . , ; .

, . . .

, , .

() . 13,3-16,0 (100-120 . .).

() . 7,8-10,7 (60-80 . .).

– . . 4,7-7,3 (35-55 . .). , .

1/3 . .

: , , , . . 5,3 (40 . .), 1 – 10,7 (80 . .), 10-14 – 13,3-14,7 (100-110 . .), 20-40 – 14,7-17,3 (110-130 . .). , .

: , .

, . . . . , , , .

, . .

. ( ). , (). , , . . , .

(. 17). – ( ). , – , . . , , . . . . , , . , . . , . , , – . . , , , , . , . , . . . , , , , .

Клетки в кровеносных сосудах

. 17.

– , . , , .

: – 1 , – , – , , – , , .

: .

. . , . , 4,8 5,6 /, – 6,0 7,0-7,5 /. , , , 0,5 /. , , .

. , , (. 18).

Клетки в кровеносных сосудах

. 18. , . 1 – ; 2 – ; 3 –

– – . . , , , . , , , . , , . , – . – . . , .

– . , , – .

– , , , , , .

, . .

. , . – , .

– .

(1861). 2 ., 8000 , 25 2, – 63·10-3-65·10-3 (63-65 ). 500-600 .

, . , . 0,3·10-3-0,7·10-3 (0,3-0,7 ), – 8·10-6-10·10-6 (0,008-0,01 ). , . 0,5·10-3-1·10-3 / (0,5-1 /), 500-600 .

, .

. , 30 , , .

, . , , 1·10-6 2 (1 2) , , . , 1·10-6 2 (1 2) 2 , .

( ) . , 4,3 (32 . .), – 2,0 (15 . .). 9,3-12,0 (70-90 . .), , , – 1,9-2,4 (14-18 . .). 0,8 (6 . .).

, (, ) , .

. , . . . , – (, .).

. (, ) . . 18,7 (140 . .), 1,3-2,0 (10-15 . .). .

: , , , .

. . – . , . . . , – . , , .

, , . , , . , .

5-14·10-2 / (5-14 /). 20·10-2 / (20 /).

. 2-3% 2 .

, . , .

, . , 70-80 1 20-23 . 1/5 4/5 – .

, . , – , , , .

. , 24Na, .

– . 1 .

– .

– . , , . . . 1 . , .

. , . . .

: , , .

– , . . . , .

. , , .

0,5 /. 2,5 /. . 0,0005 / (0,5 /), 1000 , . . , . . . (. 4).

Клетки в кровеносных сосудах

4. 0,1

. . , . . , .

. . (1842) . , . . , .

(1852) -. , : . , (. 19).

Клетки в кровеносных сосудах

. 19. . ( )

, ( ). , , . .

, , . .

. . .

() . VII ( ). ( ) . , . , (IX ), (X ) .

. . .

. , , .

, , . , , , , .

. , ( ), ( ), (), α2- ( ), – , .

.

. , , – , .

– , , , , . . , – .

, .

. , .

. , .

, , , . .

, , , .

,

, .

, , , .

. . . (1870-1871) . . . . “” (, ). , .

“” , , . .

. . . , . , .

, . . . – , .

, – . , .

, , , . , , , , , . , , .

. , . . (1875), , .

.

, , . , , , .

. , .

. , () .

. , , , . : , .

, , .

. . (. . ) . ( ), , , (). , . .

. (, ), , , .

, . 2-3 , – 20-30 . , .

, .

, . , .

. , , – , , .

. , . . , .

, , . . , , .

( , , , , , . .), .

– .

, . , ( , .).

, , , , , . .

, . . . (1866). , , , (1919-1924). , . (IX ) .

() , . . , 0,13-0,26 (1-2 . .).

, , , (. 20).

Клетки в кровеносных сосудах

. 20. . – : 1 – , 2 – , 3 – , 4 – , 5 – , 6 – , 7 – , 8 – . – : 1 – , 2 – , 3 – , 4 – , 5 – , 6 – , 7 –

. . , . . , .

, , , .

, – , , , . , , . . .

, , – . , , , .

, , – , . , , , . .

( ) , , . , , , – , .

60-70% . . (30-40%) . , . , .

. , – – , , . . , . , , . .

. . . , . , . . , . , . . . . .

. . . . , .

. , , , , , .

0,5 . . , , .

. . 0,6 . 0,5 1,2 .

“” , , . “” , , . , “” , . , (, ), “” , , .

. . . , . , , .

. 1 . , . , .

( ), , (, ), , , , . .

, . .

5-6 . . , . . , .

, . . .

, , – . .

, .

, . , (, . .), .

, , , .

Источник