Когда оба сосуда наполнятся

Когда оба сосуда наполнятся thumbnail

сообщающиеся сосуды

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.

Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.

Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.

Основное уравнение гидростатики

сообщающиеся сосуды и уровень

P = P1 + ρgh

где P1 – это среднее давление на верхний торец призмы,

P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.

ρgh – сила тяжести (вес призмы).

Звучит уравнение так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости

Доказательство закона сообщающихся сосудов

Возвращаемся к разговору про сообщающиеся сосуды.

сообщающиеся сосуды

Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.

Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.

Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики

P = P1 + ρgh1

если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.

Это давление можно определить следующим образом

P = P2 + ρgh2

где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2

P1 + ρ1gh1 = P2 + ρ2gh2

В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем

ρ1h1 = ρ2h2

или

ρ1 / ρ2 = h2 / h1

т.е. закон сообщающихся сосудов состоит в следующем.

В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Свойства сообщающихся сосудов

водонапорная башня

Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.

Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.

Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.

В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.

Приборы основанные на законе сообщающихся сосудов

сообщающиеся сосуды

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.

Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.

сообщающиеся сосуды

В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.

Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.

Применение сообщающихся сосудов

сообщающиеся сосуды

Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.

Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.

Читайте также:  Чистим сосуды снижаем холестерин

Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.

Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.

В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.

сообщающиеся сосуды

Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.

В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.

Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.

сообщающиеся сосуды

Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.

Видео по теме

Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.

Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:

Источник

Иван

18 января 2019  · 2,2 K

Два сообщающихся сосуда с различными поперечными сечениями наполнены керосином. Площадь поперечного сечения у узкого сосуда в 10 раз меньше, чем у широкого. На узкий поршень поставили гирю весом 20 Н. Рассчитайте (в килоньютонах), какой груз надо положить на широкий поршень, чтобы оба груза находились в равновесии.

к.п.н., широкий круг интересов

Согласно закону Паскаля, давление, оказываемое на жидкость или газ, передается одинаково по всем направлениям. Поэтому для сообщающихся сосудов, наполненных жидкостью, p1 = p2. Пусть S1 – площадь узкого сосуда, S2 – площадь широкого сосуда.
Так как p = F/S, где F – сила, S – площадь поршня, а F = m*g (сила тяжести),
m1 * g/S1 = m2*g/S2.
Отсюда m2 = m… Читать далее

Цистерна вместимостью 20 м3 наполнена керосином, масса которого 16 000 кг. Вычислите плотность керосина. А) 320 000 кг/м3. Это так?

писатель, поэт, инженер-механик, конструктор, психолог (по жизненному опыту)…

слово – наполнена – означает, что использован весь объём цистерны

то есть 20 м. куб., в этом случае всё просто: П =16000/20 =800 кг/м.куб, а откуда это значение 320000 кг/м.куб? да очень просто: массу умножили на объём, но в этом случае получим непонятную величину кг*м.куб, то есть кг умноженный на м. куб., а не делённые, а вот записано, почему то, как деление, похоже в голове у того, кто это проделал, полный сумбур)

За счёт чего якорь удерживает судно на одном месте, ведь его масса ничтожна в сравнении с массой корабля?

Капитан яхтенной марины в Камбодже. Штурман дальнего плавания. Люблю море и все…

За счет чего якорь удерживает судно на одном месте?

——————————————————–

За счет т.н. держащей силы якоря и упругости якорного каната (цепи). Это целая наука, которой учат в морских учебных заведениях. Якорей великое множество и важно подобрать оптимальный якорь для конкретного плавсредства. Якоря держат не только суда, но и различные морские сооружения : платформы, плав.маяки, буи, плав.причалы, дебаркадеры, понтоны, волноломы и т.д.

Я занимаюсь строительством яхтенных гаваней (марин) и для меня относительно недавно стал открытием винтовой якорь Митчелла (был такой замечательный британский инженер Александр Митчелл, изобрел он этот якорь в 19 веке, кстати).

Винтовой якорь вкручивается в дно и имеет держащую силу в 10-15 раз больше обычных якорей. При совсем маленьком весе, размерах и цене. Для меня это личная якорная революция 🙂

Прочитать ещё 8 ответов

Как бы вы максимально простыми словами объяснили теорию относительности?

Почему люди думают, что у сложных вещей есть простое объяснение? Очень чато объяснения “на пальцах” далеки от истины и лишь путают. Но ладно, попробуем. Рассмотрим специальную теорию относительности, потому что простыми словами объяснить общую совсем нереально. Так вот, рассмотрим вагон, едущий со скоростью 60 км/ч. а в нём по ходу движения идёт человек, со скоростью 10 км/ч. Вопрос – с какой скоростью человек движется относительно станции? Очевидно, что 70 = 60 + 10 км/ч. Правда ведь?

Читайте также:  Сосуд с водой масса которой 100 г и температура 0

Так вот, это не правда. На самом деле будет 69.99999999999996 км/ч

Казалось бы, смехотворная разница, но с увеличением скорости она будет нарастать. Если человек (безмассовый) в вагоне будет двигаться со скоростью света, то и относительно станции он будет двигаться ровно с той же скоростью! А это уже выглядит как полный бред с точки зрения того, к чему мы привыкли.

Все дело в том, что мы привыкли считать время идущим одинаково во всех системах отсчёта. И на наших скоростях, как мы видели, так действительно можно считать. Но впринципе оно идёт по разному, и из-за этого скорости складываются так необычно. Это одно из главных положений теории относительности

Прочитать ещё 10 ответов

По Эйнштейну, чем ближе тело или частица к скорости света, тем огромнее становится его масса. И вот,в Большом адронном коллайдере, протоны и ионы, движутся почти со скоростью света, и что это значит?

Сусанна Казарян, США, Физик

Релятивистской массы нет в природе и, согласно релятивистской механике Эйнштейна, масса остаётся инвариантной и равной массе покоя всегда, независимо от скорости (недоверчивым сюда).

Темп роста энергии частицы (E) с ростом скорости β = v/c (в единицах скорости света c) получен мною здесь. Если тело обладало скоростью β₁ = 0,9 при энергии Е₁, то для достижения скорости β₂ = 0,9…999 (n девятoк после запятой), потребуется энергия E₂ = (3,16)ⁿ⁻¹⋅Е₁. Получается, что с каждой новой девяткой в величине скорости (β), энергия должна быть увеличена в 3,16 раз. Таким образом, неограниченный рост числа девяток (n) в численном значении скорости (β), приводит к неограниченному росту энергии.

Mаксимальная скорость зарегистрированного материального объекта (протона), ускоренного до околосветовых скоростей в космическом пространстве, равна β = 0,9…999 (всего 23 девятки), а соответствующая энергия, E ~ 10¹¹ ГэВ. Области в галактиках и механизмы ускорения до этих скоростей пока неизвестны. Максимальные энергии столкновения протонов, достигнутые на ускорителе БАК (LHC) в ЦЕРН, равны 1,3×10⁴ ГэВ, что в системе отсчёта неподвижной мишени соответствует энергии протона = 9×10⁷ ГэВ или скорости протона β = 0,999 999 999 999 9999 (16 девяток). В обоих случаях масса протона остаётся неизменной и равной массе покоя, 0.938 ГэВ.

Согласно релятивистской механике, со скоростью света (β = 1) могут лететь только безмассовые частицы (фотоны), но и у них есть недостаток − они не могут лететь медленнее.

Прочитать ещё 11 ответов

Как учёные обнаружили, что скорость света — предел?

Все слышали про общую теорию относительности, и все примерно представляют себе ее тезисы. Вспомним один из них.

Время относительно. Это буквально означает, что если двигаться мимо совершенно точных и исправных часов (с любой скоростью), они покажутся вам идущими медленно. Одна секунда на них будет длиться для вас дольше секунды — тем дольше, чем быстрее вы двигаетесь. Но та же одна секунда этих часов будет длиться ровно одну секунду для того, кто в этот момент просто стоит возле них.

То же происходит с пространством. Если вы двигаетесь навстречу шару и каким-нибудь образом успеете на ходу измерить его диаметр, выставив линейку по направлению движения, окажется, что шар для вас стал сплюснутым. Да, верно: тем более сплюснутым, чем быстрее вы двигаетесь.

И вот мы двигаемся все быстрее. Еще быстрее, еще быстрее. Шары на нашем пути сплющиваются, часы на нашем пути замедляются. Они делают это с экспоненциальной скоростью: сначала чтобы заметить разницу нужно разогнаться очень сильно, чуть позже уже малейший прирост в скорости будет давать заметный невооруженным взглядом эффект сжатия. И так до тех пор, пока… пока все шары вокруг вас не станут дисками нулевой толщины с нулевым расстоянием между ними. Пока все часы не остановятся. Расстояние до любого объекта впереди или позади будет равно нулю, секунда на чужих часах будет длиться бесконечно. С вашей точки зрения вы будете находиться во всех точках своей траектории одновременно, а понятие времени или изменения просто исчезнет. Прошлое и будущее, равно как направления «вперед» и «назад» перестанут иметь для вас смысл.

Конечно, сделать этого вы не сможете, потому что у вас есть масса: вы сможете бесконечно приближаться к этой границе, но никогда не достигнете ее. Это асимптота на графиках восприятия пространства и времени. Но у света массы нет, и для него те же графики совпадают с асимптотами.

Читайте также:  Лопаются сосуды на коже после бани

Строго говоря, называть эту скорость «скоростью света» не совсем точно. Это предел кривизны пространства и времени. Что угодно, не имеющее массы, окажется именно в этом пределе. Свету повезло быть именно такой сущностью, но с тем же успехом мы могли бы назвать эту величину «скоростью немассивных тел».

Свет движется с этой скоростью, потому что у него нет массы, а не сама скорость стала максимальной благодаря свету. Забудьте про свет. Представьте себе, каково быть объектом без массы, для которого перестало существовать время и пространство. Скорость — это расстояние, проходимое в единицу времени. Как можно развить скорость еще выше, когда расстояния и времени для вас уже не существует?

Прочитать ещё 14 ответов

Источник

Основная функция сердечно-сосудистой системы – снабжать организм кислородом и освобождать его от продуктов обмена, в том числе углекислого газа. Каковы его строение и как осуществляется кровоснабжение?

Сердце – полый мышечный орган – расположено в середине грудной клетки. Правый и левый отделы сердца имеют две верхние (предсердия) и две нижние (желудочки) камеры. Притекая к сердцу, кровь поступает в предсердия, из них попадает в желудочки, а оттуда выбрасывается в крупные артерии. Движение крови в одном направлении обеспечивают клапаны, имеющиеся в каждом желудочке на пути оттока и притока.

Сердечно-сосудистая система выполняет эти функции, собирая бедную кислородом кровь со всего организма и направляя в легкие, где она обогащается кислородом и освобождается от углекислого газа. Затем насыщенная кислородом кровь переносится из легких в органы и ткани всего организма.

Функция сердца

При каждом сердечном цикле каждая камера сердца рас­слабля­ется (в это время происходит ее наполнение) и затем сокращается, выбрасывая кровь. Сокращение желудочков и предсердий называется систолой, а расслабление – диастолой. Оба предсердия расслабляются и сокращаются одновременно, так же и оба желудочка расслабляются и сокращаются одновременно.

Так устроена система кровообращения. Бедная кислородом и насыщенная углекислым газом кровь от органов по­ступает по двум крупным венам (полым венам) в правое предсердие. После того как эта камера наполняется, кровь поступает в правый желудочек. Наполнившись, он выбрасывает кровь через пульмональный клапан в легочные артерии, веду­щие к легким. Там кровь движется по капиллярам, окружаю­щим легочные альвеолы, обогащается кислородом и избавля­ет­­ся от углекислого газа, который человек выдыхает. Обогащенная кислородом кровь поступает по легочным венам в ле­вое предсердие. Этот круг кровообращения между правыми­ ка­мерами сердца, легкими и левым предсердием называется ма­лым кругом. Когда наполняется левое предсердие, обогащенная кислородом кровь поступает в левый желудочек. На­полнившись, он выбрасывает кровь через аортальный клапан­ в аорту – самую крупную артерию нашего организма. Эта кровь, богатая кислородом, направляется ко всем органам. От них по венам кровь возвращается в правое предсердие. Круг кровообращения между левым желудочком, органами тела и правым предсердием называется большим кругом.

Кровеносные сосуды

Система кровообращения включает кровеносные сосуды: артерии, артериолы, капилляры, венулы и вены. Артерии, элас­тичные и прочные, несут кровь от сердца и способны выдерживать высокое давление. Их эластичность позволяет под­дер­живать артериальное давление между сердечными со­кра­щениями. Артерии мелкого калибра и артериолы имеют мышечный слой в стенках, который регулирует их диаметр, снижая или увеличивая кровоток в той или иной области. ­Ка­пилляры – это мелкие, с очень тонкой стенкой сосуды, ко­торые служат «мостиком» между артериями, несущими кровь от сердца, и венами, по которым кровь возвращается в сердце. Благодаря капиллярам кислород и питательные ­вещества могут поступать из крови в ткани, а продукты обмена – из тканей в кровь. Капилляры переходят в венулы, а те, в свою очередь, – в вены, по которым кровь вновь идет к сердцу. Стенки вен тонкие, но их диаметр в среднем больше, чем у артерий, поэтому тот же объем крови проходит по венам с меньшей скоростью и под значительно меньшим давлением.­ В венах имеются клапаны, предотвращающие обратный ток крови.

Кровоснабжение сердца

Мышечная ткань сердца (миокард) получает часть выбрасываемой сердцем артериальной крови. Система артерий и вен (коронарная система) снабжает миокард богатой кислородом кровью и возвращает бедную кислородом кровь в правое предсердие. Правая и левая коронарные артерии отходят от аорты. Вены сердца собирают кровь в коронарный синус, из которого она возвращается в правое предсердие. Из-за большого давления, создаваемого сердцем во время сокращения, большая часть крови протекает через коронарную систему во время расслабления сердца между ударами (в диастолу желудочков).

Источник