Колено u образного сосуда


Óñëîâèÿ çàäà÷


Ãèäðîñòàòèêà.

1201.
Ñîñóä ñ âîäîé óðàâíîâåøåí íà îäíîé èç ÷àøåê ðû÷àæíûõ âåñîâ.  ñîñóä
îïóñêàþò ïîäâåøåííûé íà íèòè ìåòàëëè÷åñêèé áðóñîê ìàññîé
m
òàê, ÷òî îí îêàçûâàåòñÿ ïîëíîñòüþ
ïîãðóæåííûì â âîäó, íî íå êàñàåòñÿ ñòåíîê è äíà ñîñóäà. Êàêîé ãðóç è íà
êàêóþ ÷àøêó âåñîâ íàäî ïîëîæèòü, ÷òîáû âîññòàíîâèòü ðàâíîâåñèå?
Ïëîòíîñòü ìåòàëëà ,
âîäû .
ðåøåíèå

1202.
Êîëåíà U-îáðàçíîãî ñîñóäà óäàëåíû äðóã
îò äðóãà íà l = 15 ñì. Íàéäèòå
ìàêñèìàëüíóþ ðàçíîñòü óðîâíåé âîäû â íèõ, åñëè ñîñóä äâèæåòñÿ ñ
ãîðèçîíòàëüíûì óñêîðåíèåì à = 6 ì/ñ2.
ðåøåíèå

1203.
 ñòàêàí, íàïîëîâèíó çàïîëíåííûé æèäêîñòüþ ïëîòíîñòüþ
r
, îïóñêàþò óäåðæèâàåìûé â
âåðòèêàëüíîì ïîëîæåíèè öèëèíäð, ïî âûñîòå ðàâíûé âûñîòå ñòàêàíà. Öèëèíäð
îêàçûâàåòñÿ â ðàâíîâåñèè, êîãäà îò åãî íèæíåãî êðàÿ äî äíà îñòàåòñÿ
÷åòâåðòü âûñîòû ñòàêàíà. ×åìó ðàâíà ïëîòíîñòü ìàòåðèàëà öèëèíäðà, åñëè
åãî ñå÷åíèå S, à ñå÷åíèå ñòàêàíà
S
o?
Òðåíèÿ íåò. ðåøåíèå

1204.
Ñîñóä ñ âîäîé óðàâíîâåøåí íà âåñàõ. Ñîõðàíèòñÿ ëè ðàâíîâåñèå, åñëè
îïóñòèòü ïàëåö â âîäó, íå êàñàÿñü ïðè ýòîì äíà ñîñóäà?
ðåøåíèå

1205.
 ñîñóäå íàõîäÿòñÿ äâå íåñìåøèâàþùèåñÿ æèäêîñòè ðàçëè÷íûõ ïëîòíîñòåé. Íà
ãðàíèöå ðàçäåëà æèäêîñòåé ïëàâàåò îäíîðîäíûé êóáèê, öåëèêîì ïîãðóæåííûé
â æèäêîñòü. Ïëîòíîñòü r
ìàòåðèàëà êóáèêà áîëüøå ïëîòíîñòè r1
âåðõíåé æèäêîñòè, íî ìåíüøå ïëîòíîñòè
r2 íèæíåé æèäêîñòè (r1
< r <
r2). Êàêàÿ ÷àñòü
îáúåìà êóáèêà áóäåò íàõîäèòüñÿ â âåðõíåé æèäêîñòè?
ðåøåíèå


1206
. Òîíêàÿ îäíîðîäíàÿ ïàëî÷êà øàðíèðíî óêðåïëåíà çà âåðõíèé êîíåö.
Íèæíÿÿ ÷àñòü ïàëî÷êè ïîãðóæåíà â âîäó (r
= 1000 êã/ì3). Ïðè ýòîì ðàâíîâåñèå äîñòèãàåòñÿ òîãäà, êîãäà
ïàëî÷êà ðàñïîëîæåíà íàêëîííî ê ïîâåðõíîñòè âîäû è â âîäå íàõîäèòñÿ 2/3
÷àñòè ïàëî÷êè. Îïðåäåëèòå ïëîòíîñòü ïàëî÷êè?
ðåøåíèå

1207.
Òåëî â ôîðìå öèëèíäðà ïëàâàåò â âîäå â âåðòèêàëüíîì ïîëîæåíèè, áóäó÷è
ïîãðóæåííûì â íåå íà 80 % ñâîåãî îáúåìà. Êàêàÿ ÷àñòü òåëà áóäåò
ïîãðóæåíà â âîäó, åñëè ïîâåðõ íåå íàëèòü ñëîé áåíçèíà ïîëíîñòüþ
çàêðûâàþùèé òåëî? Ïëîòíîñòü âîäû 1000 êã/ì3, ïëîòíîñòü
áåíçèíà – 700 êã/ì3.
ðåøåíèå

1208.
 áàê äèàìåòðîì d = 0,2 ì íàëèòî
m
1 = 40 êã âîäû è áðîøåí êóñîê
ëüäà ìàññîé m2 = 9 êã ñ
ïðèìåðçøèì êàìíåì ìàññîé m3
= 0,9 êã. Ïëîòíîñòü âîäû r1
= 1000 êã/ì3, ëüäà – r2
= 900 êã/ì3, êàìíÿ – r3
= 3000 êã/ì3. Îïðåäåëèòå óðîâåíü âîäû â áàêå ïîñëå òàÿíèÿ
ëüäà. ðåøåíèå

Читайте также:  Поздняя фаза повышения проницаемости сосудов

1209.
 áàê äèàìåòðîì d = 0,2 ì íàëèòî
m
1 = 60 êã âîäû è áðîøåí êóñîê
ëüäà ìàññîé m2 = 9 êã ñ
ïðèìåðçøèì ïåíîïëàñòîì ìàññîé m3
= 0,3 êã. Ïëîòíîñòü âîäû r1
= 1000 êã/ì3, ëüäà – r2
= 900 êã/ì3, ïåíîïëàñòà – r3
= 100 êã/ì3. Îïðåäåëèòå óðîâåíü âîäû â áàêå ïîñëå òàÿíèÿ ëüäà.
ðåøåíèå


1210
. Îòêðûòàÿ öèñòåðíà ñ âîäîé ñòîèò íà ðåëüñàõ, ïî êîòîðûì ìîæåò
äâèãàòüñÿ áåç òðåíèÿ. Ìàññà öèñòåðíû M,
ìàññà âîäû m. Ñâåðõó â öèñòåðíó íà
ðàññòîÿíèè l îò åå öåíòðà ïàäàåò
âåðòèêàëüíî ãðóç ìàññîé m.
 êàêóþ ñòîðîíó è íà ñêîëüêî ñäâèíåòñÿ öèñòåðíà ê òîìó âðåìåíè, êîãäà
äâèæåíèå âîäû óñïîêîèòñÿ è ãðóç áóäåò ïëàâàòü?
ðåøåíèå

                                                                  
ñëåäóþùàÿ äåñÿòêà
>>>

Источник

Формула давления жидкости отличается от формулы, с помощью которой можно рассчитать давление твердого тела. Потому, что давление жидкости не зависит от площади поверхности, на которую жидкость давит.

Закон Паскаля

Французский физик, Блез Паскаль, в 1653 году сформулировал закон: «Давление, которое мы оказываем на жидкость (или газ), она без изменения передаст в любую точку и во всех направлениях».

Мы немного упростим формулировку:

Жидкость (или газ) передает давление, оказанное на нее, одинаково и без изменений во все стороны.

Это значит, что на одной и той же глубине жидкость будет одинаково давить и на дно, и на стенки сосуда.

Рис. 1. Чем глубже, тем больше давление жидкости, но в любой точке жидкость передает это давление одинаково во все стороны

На рисунке 1 изображен сосуд, наполненный жидкостью. Высоту столбика жидкости – то есть, глубину, отсчитываем от поверхности жидкости.

Видно, что на разных глубинах давление отличается.

[ large begin{cases} h_{1}  < h_{2} < h_{3} \ P_{1}  < P_{2} < P_{3} end{cases} ]

Чем глубже, тем больше давление жидкости. Но в любой точке оно одинаково передается во все стороны.

Формула давления жидкости

Формула, по которой можно посчитать давление жидкости:

[ large boxed{ P = rho_{text{ж}} cdot g cdot h }]

​( P left(text{Па}right) )​ – давление жидкости;

​( displaystyle rho_{text{ж}} left(frac{text{кг}}{text{м}^3} right) )​ – плотность жидкости;

​( displaystyle g left(frac{text{м}}{c^{2}} right) )​ – ускорение свободного падения;

Для большинства школьных задач можно принимать ​( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) )​;

Читайте также:  Ишемическая болезнь сосудов что это такое

​( h left(text{м}right) )​ – высота столбика жидкости.

В формулу для давления жидкости не входит площадь S поверхности, на которую эта жидкость давит.

Поэтому, давление жидкости не зависит от площади. А давление твердого тела рассчитывают по другой формуле.

В некоторых задачах указывают объем используемой жидкости. И иногда просят рассчитать силу давления. Чтобы получить правильный ответ для таких задач, нужно уметь переводить площади и объемы в единицы системы СИ.

Сообщающиеся сосуды

Сообщающиеся сосуды – это емкости, расположенные на плоской горизонтальной поверхности, у дна они соединяются трубками.

Если в один из сосудов начать наливать жидкость, то она будет распределяться по всем сосудам, так, что ее уровень будет одинаковым во всех сосудах (рис. 2).

Рис. 2. В сообщающихся сосудах уровень жидкости будет одинаковым

Неважно, какую форму имеет сосуд. Давление жидкости во всех сосудах будет одинаковым. Поэтому одинаковой будет высота h столбика жидкости во всех сосудах.

U-образное колено

U-образное колено – это два сообщающихся сосуда, диаметры сосудов одинаковые.

Жидкости, которые заливают в колено, не должны смешиваться (рис. 3). Например, можно залить в оду трубку воду, а в другую — масло.

Рис. 3. Два сообщающихся сосуда одинакового диаметра образуют U-образное колено

Запишем формулы для расчета давления в левом (P_{1}) и правом (P_{2}) частях колена.

[ large boxed{begin{cases} P_{1} = rho_{1} cdot g cdot h_{1} \ P_{2} = rho_{2} cdot g cdot h_{2} end{cases}} ]

Чем больше разница плотностей двух жидкостей, тем больше отличаются высоты их столбиков.

При решении задач общую нижнюю часть колена не учитываем. На рисунке 3 она отделена от верхней части горизонтальной линией.

Давление столбиков, оставшихся в верхней части, будет одинаковым.

( P_{1} ) – давление жидкости в левой части колена;

( P_{2} ) – давление жидкости в правой части колена.

[ large begin{cases} P_{1} = P_{2} \  rho_{1} cdot g cdot h_{1} = rho_{2} cdot g cdot h_{2} end{cases} ]

Обе части последнего уравнения разделим на ускорение свободно падения. Тогда получим соотношение для высот столбиков жидкости и их плотностей:

[ large boxed{ rho_{1} cdot h_{1} = rho_{2} cdot h_{2} }]

Высоты столбиков можно измерить линейкой. Зная плотность одной из жидкостей, можно найти плотность второй жидкости.

Примечание: Давление жидкостей часто измеряют в миллиметрах ртутного столба или метрах водяного столба. Переходите по ссылке, чтобы узнать, как связаны эти единицы измерения и как давление переводить в систему СИ.

Читайте также:  Атеросклероз сосудов чем помочь

Гидравлический пресс

Молекулы жидкости плотно упакованы, они прилегают друг к другу. Поэтому жидкости не сжимаемы! Это свойство жидкостей используют в гидравлическом прессе.

Гидравлический пресс – это два сообщающихся сосуда. Их называют цилиндрами. Диаметры цилиндров отличаются. Внутри каждого цилиндра вверх и вниз может свободно перемещаться поршень (рис. 4). Поршень плотно прилегает к стенкам цилиндра, чтобы жидкость из цилиндра не просачивалась наружу.

Рис. 4. Гидравлический пресс – это два сообщающихся сосуда различных диаметров, по сосудам могут без трения перемещаться поршни

Перемещаясь, поршень из цилиндра вытесняет жидкость в соседний цилиндр. Объем жидкости, вытесненной из одного цилиндра, совпадает с объемом, перешедшим в другой цилиндр, так как жидкость не проливается наружу.

[ large Delta V_{1} = Delta V_{2} ]

( Delta V_{1} left(text{м}^{3}right) )  – объем жидкости, вытесненной из первого цилиндра;

( Delta V_{2} left(text{м}^{3}right) )  – объем жидкости, перешедшей во второй цилиндр.

Из геометрии известно, объем цилиндрической фигуры можно найти по формуле:

[ large boxed{ Delta V = Delta h cdot S }]

( Delta h left(text{м}right) )  – высота столбика вытесненной жидкости;

( S left(text{м}^{2}right) )  – площадь поршня (или основания цилиндра);

Так как объемы вытесненной и перешедшей в другой цилиндр жидкостей равны, можем записать

[ large Delta h_{1} cdot S_{1} = Delta h_{2} cdot S_{2} ]

То есть, высоты столбиков отличаются во столько же раз, во сколько отличаются площади поршней.

Площадь поверхности поршня и его диаметр связаны соотношением:

[ large boxed{ S_{text{круга}} = pi cdot frac{d^{2}}{4} }]

( S left(text{м}^{2}right) )  – площадь поршня;

( d left(text{м}right) )  – диаметр поршня;

Давления в цилиндрах будут равны.

[ large P_{text{общ.лев}} = P_{text{общ.прав}} ]

Поршни в цилиндрах не двигаются – т. е. находятся в равновесии. Запишем условия равновесия для поршней:

[ large boxed{ frac{F_{1}}{S_{1}} + rho_{1} cdot g cdot h_{1} = frac{F_{2}}{S_{2}} + rho_{2} cdot g cdot h_{2} } ]

Здесь дробью вида (displaystylelarge frac{F}{S}) обозначено давление твердого тела (ссылка) — поршня.

Назовем цилиндр большого диаметра большим цилиндром, а цилиндр малого диаметра – малым. Сформулируем принцип действия гидравлического пресса:

С помощью малой силы в малом цилиндре мы можем создавать большую силу в большом цилиндре.

Источник