Корневые волоски и сосуды древесины зона проведения

Корневые волоски и сосуды древесины зона проведения thumbnail

Определение

Корень — осевой подземный орган растения, обладающий неограниченным концевым ростом.

Корневые волоски и сосуды древесины зона проведения

Виды корней (рис. 1):

Главный корень развивается из зародышевого корешка семени и играет в растении роль центральной оси подземной части.

Придаточные корни растут от побега.

Боковые корни образуются на главном и придаточных корнях.

Вся совокупность корней растения называется корневой системой.

типы корневых систем

В зависимости от развития тех или иных видов корней выделяют два типа корневых систем (рис. 2).

Стержневая корневая система состоит из хорошо развитого главного корня и отходящих от него более мелких боковых корней, которые в свою очередь делятся на боковые корни второго, третьего и т. д. порядков.

Такая корневая система характерна для двудольных растений и хорошо просматривается только у молодых растений, выращенных из семян. У старых многолетних растений главный корень со временем замедляет рост, а боковые корни догоняют его или даже перерастают.

Мочковатая корневая система состоит из многочисленных придаточных и боковых корней. Главный корень не развивается или развивается слабо.

Мочковатая корневая система характерна для однодольных растений. 

Корневые волоски и сосуды древесины зона проведения

Рис. 2. Типы корневых систем

внутреннее строение корня

В строении корня различают несколько зон, каждая из которых имеет определенное строение и выполняет определенные функции (рис. 3).

Зона деления состоит из мелких постоянно делящихся клеток верхушечной меристемы. Это зона находится на кончиках всех корней растения. Благодаря верхушечной меристеме осуществляется рост корня в длину. 

Корневой чехлик — несколько слоёв плотно сросшихся клеток с утолщенными стенками. 

Функция корневого чехлика:

  • механическая защита зоны деления;

  • выделение слизистых веществ для более легкого проникновения в почву.

Клетки снаружи корневого чехлика постоянно разрушаются, а с внутренней стороны он нарастает благодаря клеткам меристемы.

Пикировка корня — удаление кончика главного корня — производится с целью прекращения роста главного корня и усиления роста боковых корней: общая площадь корневого питания увеличивается.

Корневые волоски и сосуды древесины зона проведения

Рис. 3. Зоны корня

Зона растяжения (роста). В ней клетки растут, вытягиваясь в длину, благодаря чему и происходит удлинение корня.

В этой же зоне начинается дифференцировка клеток. Поверхностные клетки превращаются в клетки ризодермы. В центре формируются клетки проводящих тканей.

Зона всасывания. Зона всасывания снаружи покрыта тонкой покровной тканью эпиблемой (или ризодермой). В этой зоне клетки эпиблемы образуют выросты — корневые волоски. Корневые волоски представляют собой длинные тонкие нитевидные клеточные выросты, в которые перемещается ядро клетки. По мере роста корня они разрушаются, эпидерма замещается пробкой и зона всасывания замещается зоной проведения.

Функция корневых волосков: поглощение из почвы воды и минеральных веществ.

Зона проведения продолжается до наземных частей растения. В ней находятся сосуды ксилемы, по которым от корня поднимается вода с минеральными веществами, и ситовидные трубки флоэмы, по которым  в корень поступают органические вещества из листьев.

Гистологическое строение корня

На поперечном срезе молодой части (верх зоны растяжения) корня видно, что большую его часть составляют паренхимные клетки коры (рис. 4). Сверху они покрыты однослойной эпиблемой, а в середине находятся зачатки ксилемы и флоэмы. Они окружены двумя специальными слоями клеток: эндодермой и перициклом

Эндодерма — внутренний однорядный слой плотно сомкнутых клеток первичной коры, прилегающий к центральному цилиндру осевых органов высших растений.

В корнях радиальные и поперечные стенки клеток эндодермы имеют утолщения в виде поясков, содержащие суберин и лигнин (пояски Каспари), тонкостенными остаются пропускные клетки этого слоя. Таким образом, эндодерма является физиологическим барьером, регулирующим поступление воды и ионов из первичной коры в центральный цилиндр корня.

Перицикл или перикамбий — первичная образовательная ткань растений, окружающая проводящие ткани. Формирует осевой цилиндр, наружным слоем которого он является. В нём закладываются придаточные и боковые корни. У двудольных дифференцируется в камбий и феллоген в процессе вторичного утолщения корня.

Феллоген, или пробковый камбий — образовательная ткань, дающая начало вторичной покровной ткани — пробке.

Корневые волоски и сосуды древесины зона проведения

Рис. 4. Молодая часть корня (поперечный срез)

На более поздних стадиях формируется проводящая система корня (рис. 5).

Корневые волоски и сосуды древесины зона проведения

Рис. 5. Проводящая система корня

Поводящая система имеет на срезе форму круга, поэтому её часто называют проводящим цилиндром. Ксилема располагается в центре и образует структуру звезды с лучами, доходящими до края проводящего цилиндра.

Флоэма располагается в промежутках между лучами ксилемы.

Между ксилемой и флоэмой имеется слой камбия, благодаря которому происходит образование новых проводящих элементов.

Эндодерма, окружающая проводящий цилиндр, играет роль запирающего механизма. Её клетки плотно соединены друг с другом, их стенки пропитаны водонепроницаемыми веществами, благодаря чему вода и минеральные соли не могут выйти из проводящего цилиндра вбок и вынуждены двигаться вверх. Из клеток коры вода и минеральные соли попадают в проводящий цилиндр благодаря наличию в кольце эндодермы специальных пропускных клеток.

Перицикл, расположенный под эндодермой, является образовательной тканью, которая даёт начало боковым корням (рис. 6).

Корневые волоски и сосуды древесины зона проведения

Рис. 6. Образование перициклом боковых корней

В результате деления клеток перицикла формируется верхушечная меристема боковых корней, которая обеспечивает их рост.

Читайте также:  Маска для лица с сосудами

Таким образом, проводящая система бокового корня сразу оказывается связанной с проводящей системой материнского корня и может получать от неё вещества, необходимые для роста, а в дальнейшем передавать в неё воду и минеральные соли.

Источник

«В природе нет ничего бесполезного» – Мишель де Монтень

Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня
до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту.
И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против
силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать
самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая
микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку.
Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

Проводящие ткани растений

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты
обмена веществ из них.
Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям
(восходящий ток) и от листьев к корням (нисходящий ток).

Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же
вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины).
От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и
сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры,
представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.

  • Трахеиды
  • Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение
    и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую,
    спиралевидную, кольчатую.

    Трахеиды ксилемы

  • Сосуды
  • Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие
    благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.

    Сосуды ксилемы

    Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению
    он растягивается и обеспечивает ток воды и минеральных солей.

    Растяжение сосудов

  • Древесинные волокна (либриформ)
  • Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной
    клеточной стенкой, которая придает ксилеме механическую прочность.

  • Паренхимные клетки (древесинная паренхима)
  • Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Флоэма (луб)

Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания,
подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.

Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная
флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.

Читайте также:  Лечение сосудов лекарственными средствами

Разберемся с компонентами, которые входят в состав флоэмы:

  • Ситовидные элементы
  • Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂

    Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ
    и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность
    ситовидных трубок.

    Клетки-спутницы

  • Склеренхимные элементы (лубяные волокна)
  • Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

  • Паренхимные элементы (лубяная паренхима)
  • Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают.
Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

Клетки-спутницы

Жилка

Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая
колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия,
располагаются в центральном осевом цилиндре. Существует два вида жилок:

  • Открытые
  • Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема
    ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно
    обнаружить во всех органах двудольных растений.

  • Закрытые
  • Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы.
    Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань
– склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

Жилка, сосудисто-волокнистый пучок

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и
присасывающего листового.

  • Корневое давление
  • Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос:
    клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться
    в сосуды.

  • Транспирация
  • Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых
    волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место
    освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости.
    Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Сложные реакции обмена веществ у растений объясняются особым строением частей их тела: корня, стебля, листьев, называемых вегетативными органами. Они отвечают за процессы фотосинтеза, транспирации, осмоса. В данной работе мы изучим строение и функции таких элементов растений, как корневые волоски. Это важные структуры, определяющие всасывание воды и минеральных солей из почвы.

Корень – вегетативный орган семенных растений

Подземная часть голосеменных и цветковых растений представлена двумя типами корневой системы: стержневой и мочковатой. Они состоят из главного, боковых, придаточных (у однодольных растений) корней и большого количества мелких структур, имеющих название – корневые волоски.

корневые волоски это

Это выросты, представленные единичными клетками эпиблемы (ризодермы). Они носят название “трихобласты”. Являясь опорой и выполняя функции запасания органических веществ, всасывания и размножения ( так называемые корневые отпрыски у вишни, ивы), корень опосредствованно участвует и в таких процессах обмена веществ, как транспирация, дыхание, фотосинтез.

Зона всасывания

Главный корень имеет сложное анатомическое строение, причем различные его участки выполняют многообразные функции. В связи с этим их принято называть зонами. Исходя из функции корневых волосков (выше участка растяжения, входящего в зону роста) и расположено скопление выростов покровной ткани. Эта область и называется зоной всасывания. Она составляет от одного до трех сантиметров. На этом участке могут располагаться от 200 до 1500 и более вытянутых клеток эпиблемы. Они живут недолго: от нескольких часов до 20 суток, а затем отмирают. Одновременно из ризодермы образуются новые структуры. Клетка корневого волоска, соприкасаясь с почвой, способна к всасыванию из неё молекул воды и растворенных солей в виде ионов натрия, хлора, магния, кислотных остатков нитратной, нитритной и фосфатной кислот.

Читайте также:  Сливочное масло и сосуды

Эпиблема и особенности её строения

Эта растительная ткань относится к группе первичных меристем. Участвуя в делении, её клетки обеспечивают формирование таких элементов, как корневые волоски. Это происходит во внешнем слое образовательной ткани корня – феллогене. Образованная в течение вегетационного периода ризодерма отмирает. На её месте образуются молодые клетки перидермы – вторичной покровной ткани, неспособной к всасыванию почвенных растворов. Новый корневой волосок, функция которого – всасывание воды и минеральных солей, формируется из вышележащего участка эпиблемы.

корневые волоски

Функции корневых волосков

Эти структуры образуются из выпячиваний ризодермы и представляют собой единичные клетки первичной меристемы, способной к всасыванию почвенного раствора. С течением времени они вытягиваются, а клеточная мембрана становится способной пропускать внутрь как гипотонические, так и сильно концентрированные растворы солей. При внесении минеральных удобрений, например, азотных и калийных, в почве возрастает содержание ионов аммония, калия, нитрат-иона. Это происходит весной, так как она является наилучшим временем для внесения удобрений такого типа. Почвенный раствор, содержащий выше перечисленные виды ионов, проникает в цитоплазму трихобласта путем пассивной диффузии.

клетка корневого волоска

Осеннее внесение фосфорных удобрений, требующих больше времени для растворения, вызывает всасывание корневыми волосками ионов кислотных остатков фосфатной и метафосфорной кислот. С началом сокодвижения в конце февраля – начале марта почти весь объем клеток ризодермы заполнен вакуолями, ядро смещено к верхушке корневого волоска. Сама же клетка способна к секреции молекул органических кислот: щавелевой, яблочной. Они растворяют частицы гумуса, усиливая процесс всасывания. Формирование корневых волосков происходит достаточно быстро. Несмотря на короткий срок жизни, они способны поглощать большие объемы почвенного раствора. Например, у древесного растения площадь всасывания составляет о 120 до 640 м2.

Что такое трихобласты

Ранее мы изучили особенности строения и функций первичной ткани покровов растений. Она состоит из одного слоя клеток и называется эпиблемой, располагаясь на молодых боковых корнях, отрастающих от главного или придаточных корней. Корневые волоски – это выросты покровной ткани, представляющие собой сильно вытянутые структуры. Нужно помнить, что все клетки эпиблемы – полипотентные, то есть способные к формированию корневых волосков. Но образуются они только из трихобластов – выпячиваний эпиблемы, имеющих вид микроскопических бугорков.

функции корневых волосков

Покровная ткань, ответственная за образование трихобластов, имеет цитологические особенности строения: так, в её клетках отсутствует кутикула и толстая целлюлозная стенка. В цитоплазме находится большое количество органелл, синтезирующих молекулы АТФ, – митохондрий. Они необходимы, так как всасывание воды и минеральных солей требует затрат энергии. Трихобласты также не имеют устьиц – элементов покровной ткани, отвечающих за процессы дыхания растения и транспирацию – испарение воды.

Как растворы солей проникают в корни растений

Трихобласт и формирующийся из него корневой волосок, функция которого – всасывание воды и минеральных солей из почвы, можно считать осмотической системой. Отсутствие жесткой клеточной стенки и эластичность мембраны способствует транспорту молекул из внешней среды в цитоплазму. В специальных органеллах корневого волоска – вакуолях, накапливаются гипертонические растворы глюкозы, фруктозы, яблочной, лимонной и щавелевой кислот.

И мембрана, и тонопласт клетки обладают избирательной полупроницаемостью. Поэтому почвенный раствор, являясь менее концентрированным, чем клеточный сок, по законам осмоса проникает внутрь корневого волоска. Водный потенциал растворов, поступающих из почвы выше, чем этот показатель в тонопласте, а осмотический потенциал ниже. Вода и минеральные соли траспортируются из клетки корневого волоска в ксилему. Это проводящая ткань, формирующая сосуды растений – трахеи или трахеиды. По ним почвенный раствор движется вверх по стеблю к листьям и другим частям растения.

корневой волосок функция

Пикировка и её значение

Чтобы повысить площадь всасывания корневой системы, нужно добиться увеличения количества боковых корней. Их эпиблема, содержащая трихобласты, и сформирует дополнительные корневые волоски. Для этого применяют механический способ прощипывания верхушки корня, разрушающий зону деления, расположенную над корневым чехликом. Он называется пикировкой. Этот прием стимулирует рост боковых частей, на которых развивается большое количество корневых волосков. При этом рост главного корня в длину прекращается. Большая площадь зоны всасывания положительно сказывается на росте и развитии растения, повышая его урожайность и жизнестойкость.

какую функцию выполняет корневой волосок

В данной статье мы изучили особенности строения зоны всасывания корня покрытосеменных растений, а также выяснили, какую функцию выполняет корневой волосок, развивающийся из эпиблемы.

Источник