Коронарные сосуды сердца функции

Коронарные сосуды сердца функции thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 декабря 2019; проверки требуют 6 правок.

Коронарное кровообращение — циркуляция крови по кровеносным сосудам миокарда. Сосуды, которые доставляют к миокарду насыщенную кислородом (артериальную) кровь, называются коронарными артериями. Сосуды, по которым от сердечной мышцы оттекает деоксигенированная (венозная) кровь, называются коронарными венами.

Коронарные артерии, располагающиеся на поверхности сердца, называются эпикардиальными. Эти артерии в норме способны к саморегуляции, обеспечивающей поддержание коронарного кровотока на уровне, соответствующем потребностям миокарда. Эти сравнительно узкие артерии обычно поражаются атеросклерозом и подвержены стенозу с развитием коронарной недостаточности. Коронарные артерии, располагающиеся глубоко в миокарде, называются субэндокардиальными.

Коронарные артерии относятся к «конечному кровотоку», являясь единственным источником кровоснабжения миокарда: избыточный кровоток крайне незначителен, в связи с чем стеноз этих сосудов может быть столь критичным.

Анатомия коронарных артерий[править | править код]

Анатомия кровоснабжения миокарда индивидуальна для каждого человека. Полная оценка анатомии коронарных артерий возможна лишь посредством коронарографии или коронарной КТ-ангиографии.

Различают два основных ствола коронарного кровоснабжения — правую (англ. RCA) и левую (англ. LCA) коронарные артерии. Обе этих артерии отходят от начального отдела (корня) аорты, непосредственно над аортальным клапаном. Левая коронарная артерия исходит из левого аортального синуса, правая — из правого.

Правая коронарная артерия является источником кровоснабжения большей части правого желудочка сердца, части сердечной перегородки и задней стенки левого желудочка сердца. Остальные отделы сердца снабжаются левой коронарной артерией.[1]

Левая коронарная артерия разделяется на две или три, реже четыре артерии, из которых наиболее клинически значимыми являются передняя нисходящая и огибающая ветви. Передняя нисходящая ветвь является непосредственным продолжением левой коронарной артерии и спускается к верхушке сердца. Огибающая ветвь отходит от левой коронарной артерии в её начале приблизительно под прямым углом, огибает сердце спереди назад, иногда достигая по задней стенке межжелудочковой борозды.

Варианты[править | править код]

В 4 % случаев имеется третья, задняя коронарная артерия. В редких случаях наблюдается единственная коронарная артерия, огибающая корень аорты.

Иногда отмечается удвоение коронарных артерий (коронарная артерия замещается двумя артериями, располагающимися параллельно друг другу).

Доминантность[править | править код]

Артерия, отдающая заднюю нисходящую артерию (англ. PDA, задняя межжелудочковая артерия)[2], определяет доминантность кровоснабжения миокарда.[3]

  • Если задняя нисходящая артерия отходит от правой коронарной артерии, говорится о правом типе доминантности кровоснабжения миокарда.
  • Если задняя нисходящая артерия отходит от огибающей артерии (англ. LCX, ветви левой коронарной артерии), говорится о левом типе доминантности кровоснабжения миокарда.
  • Ситуация кровоснабжения задней нисходящей артерии и правой, и огибающей коронарными артериями называется содоминантным кровоснабжением миокарда.

Приблизительно в 70 % случаев наблюдается правый тип доминантности, 20 % — содоминантность, 10 % — левый тип доминантности[3].

Доминантность отражает источник кровоснабжения артерии, питающей предсердно-желудочковый узел.

Физиология коронарного кровотока[править | править код]

Сердечный кровоток в состоянии покоя составляет 0,8 — 0,9 мл/г в мин (4 % общего сердечного выброса). При максимальной нагрузке коронарный кровоток может возрастать в 4 — 5 раз. Скорость коронарного кровотока определяется давлением в аорте, частотой сердечных сокращений, вегетативной иннервацией и, в наибольшей степени, метаболическими факторами.

Венозный отток[править | править код]

От миокарда кровь оттекает преимущественно (2/3 коронарной крови) в три вены сердца: большую, среднюю и малую. Сливаясь, они образуют венечный синус, открывающийся в правое предсердие. Остальная кровь оттекает по передним сердечным венам и тебезиевым венам.[1]

Примечания[править | править код]

Источник

Сердце, отвечающее за создание оптимального для транспортировки крови давления в сосудистой системе, само нуждается в качественном и очень интенсивном кровоснабжении. За него отвечают артерии сердца — короткие сосуды с очень прочной и эластичной стенкой, которые доставляют кровь к сердечной мышце, клапанам и перегородкам сердца. Главное, чем отличаются коронарные артерии от других типов сосудов — полная саморегуляция, которая позволяет этой ограниченной системе бесперебойно снабжать сердце кислородом и питательными веществами.

Особенности строения

Схема коронарных сосудов сердца намного более сложная, чем в других органах. Несмотря на то, что начало и конец этой замкнутой, по сути, системы, не выходит за пределы органа и не имеет внешних притоков, а также не имеет общих участков с системами кровоснабжения других органов, она остается достаточно сложной. Сравнительно небольшое количество крупных артерий часто разделяется на более мелкие, в результате чего коронарная сеть представляет собой густое переплетение огромного количества ответвлений, имеющих одно начало — коронарную артерию, отходящую от луковицы аорты.

Основной особенностью анатомии коронарных артерий является более прочная и упругая стенка сосудов. В крупных ответвлениях четко выделяются три слоя: эндотелий, мышечно-волокнистый слой и наружный слой из соединительной ткани.

Дополнительный запас прочности и эластичности необходим коронарным артериям, так как они выдерживают постоянную повышенную нагрузку.

По мере разветвления на более тонкие сосуды толщина мышечно-волокнистого слоя уменьшается. В прекапиллярах и капиллярной сети выделяются только два слоя — рыхлый адвентиций и эндотелий, а между ними находятся расположенные на мембране рецепторы.

Некоторые толстые сосуды сердца соединены между собой протоками или так называемыми фистулами коронарных артерий, по которым при необходимости кровь перенаправляется к участкам, особо нуждающимся в кровоснабжении.

Виды коронарных артерий

Наиболее обширными и значимыми в кровоснабжении миокарда и структур сердца считаются придаточные коронарные артерии сердца. В их структуру входят 4 эпикардиальных сосуда (расположенных на поверхности сердца трубок) и множество субэндокардиальных (расположенных в толще миокарда). К эпикардиальным относятся:

  • правая венечная артерия, снабжающая кровью перегородку и полость правого желудочка;
  • левая венечная артерия, которая разветвляется на несколько стволов и обеспечивает приток к крови к остальным частям сердца;
  • огибающая ветвь артерии, снабжающая кровью стенку между правым и левым желудочками;
  • передняя нисходящая артерия, ответвления которой снабжают непосредственно миокард.
Читайте также:  Чай травы для сердца и сосудов

виды коронарных артерийСубэндокардиальные артерии имеют меньший диаметр, чем расположенные на поверхности органа кровеносные трубки. Они полностью погружены в толщу миокарда и отвечают за кровоснабжение практически всех частей сердечной мышцы и других структур органа.

Независимо от локализации в структуре сердца все они принадлежат стволу правой или левой коронарной артерии. Правому стволу принадлежат сосудистые трубки синусного узла, конусной, правожелудочковой ветвей, а также ответвления острого края, задняя межжелудочковая и задне-боковая артериальные трубки. Стволу левой коронарной артерии принадлежат межжелудочковая трубка, разветвляющаяся на диагнональные и септальные сосуды, и огибающая артерия, разветвляющаяся на ветви тупого края.

В некоторых случаях между межжелудочковым и огибающим стволами пролегает дополнительная трубка — промежуточная артерия.

Коронарное кровообращение

В физиологии выделяется несколько типов коронарного кровообращения, принадлежность которых определяется по преобладанию площади разветвления той или иной артерии сердца. Признак, по которому определяют такое преобладание, состоит в достижении артерией пересечения венечной и межжелудочковой бороздок. В анатомии его называют бессосудистым, и именно здесь хорошо видно, какой ствол наиболее разветвлен и чьи ответвления проходят к верхушке сердца.

Например, при достижении правой коронарной артерии бессосудистого участка преобладает правый тип кровоснабжения сердца. Огибающий ствол при этом развит слабее. Преобладающее развитие левой коронарной артерии, что логично, выражается тем, что огибающая корень сердца левая артерия развита заметно лучше, чем ответвления правой. При сбалансированном типе коронарного кровообращения наблюдается одинаковое развитие правой и левой коронарных артерий.

Патологии

патологии коронарных артерийВ отличие от других крупных сосудов, коронарные практически не подвергаются чрезмерному растяжению. Однако им присуща куда более опасная проблема — кратковременное или хроническое сужение просвета трубки, которая влечет ухудшение кровоснабжения миокарда и структур сердца.

Наименее опасными врачи называют кратковременные спазмы коронарных артерий. Они всегда протекают на фоне острой симптоматики:

  • интенсивная боль в сердце;
  • внезапное головокружение;
  • проблемы с дыханием;
  • тошнота.

Купируется состояние достаточно быстро приемом сосудорасширяющих препаратов. При незначительном спазме ослабление симптомов происходит также при полноценном отдыхе.

Длительно сохраняющееся сужение сосуда кардиологи называют окклюзией коронарных артерий. Это состояние чаще всего провоцирует хронические кардиологические симптомы:

  • общий упадок сил;
  • снижение физической выносливости;
  • сильное утомление и одышка при повышении нагрузки;
  • проблемы со сном;
  • периодические тупые, но терпимые боли в сердце.

При длительном протекании возможно значительное снижение массы тела, ухудшение когнитивных функций и т. д.

Подобные состояния чаще всего провоцируются атеросклерозом коронарных артерий, то есть перекрытием их просвета холестериновой бляшкой. Постоянно присутствующее недостаточное кровоснабжение тканей приводит к ишемии органа: часть миокарда испытывает острую кислородную недостаточность и постепенно «отмирает». В результате больной рано или поздно переживает «катастрофу» сердца — инфаркт миокарда.

На МСКТ коронарной артерии участки ишемии хорошо заметны, поэтому это исследование назначают для выявления атеросклероза и его последствий. Схожей результативность обладает КТ коронарной артерии с контрастом, однако его чаще используют для выявления атеросклеротических участков.

Видео

Источник

Коронарное кровообращение (circulatio coronaria; лат. coronarius венечный; син. венечное кровообращение) — движение крови по коронарным (венечным) сосудам сердца, обеспечивающее доставку кислорода и питательных субстратов всем тканям сердца и вымывание из них продуктов метаболизма.

Миокард получает кровь по двум венечным артериям — правой и левой, устья которых располагаются в корне аорты у створок аортального клапана. Это сосуды мышечного типа. Ветви левой венечной артерии снабжают кровью левый желудочек, межжелудочковую перегородку, левое и частично правое предсердие. Ветви правой венечной артерии снабжают стенки правой половины сердца. Такая схема кровоснабжения сердца соблюдается не во всех случаях (см. Сердце), что имеет значение для локализации и размеров очагов некроза при закупорке разных ветвей коронарных артерий (см. Инфаркт миокарда). Крупные стволы артерии, стелясь по поверхности сердца, отдают ветви, уходящие вглубь под прямым углом; ветвления достигают восьми порядков. Коронарные артерии относят к артериям концевого типа, однако они имеют межартериальные анастомозы, способные пропустить от 3 до 5% кровотока в бассейне их расположения. Разрастанию межартериальных анастомозов и увеличению их пропускной способности способствует длительная гипоксия миокарда. Капиллярная сеть миокарда очень густа: число капилляров близко к числу мышечных волокон. В субэндокардиальном слое сеть капилляров гуще, чем в субэпикардиальном. Венозная система сердца имеет сложное строение. В правое предсердие впадает самая крупная вена — коронарный синус, в который сливается венозная кровь из разных отделов сердца (преимущественно от стенок левого желудочка). Кроме того, мелкие вены сердца непосредственно впадают в полости правой половины сердца. Миокард пронизан сетью так наз. несосудистых каналов. По диаметру они соответствуют венулам и артериолам, а по строению стенки напоминают капилляры. Это тебезиевы (вьессеновы) сосуды — артериоло-, вено- и синолюминальные пути, соединяющие соответствующие сосуды с полостями сердца. К дренажной системе сердца относятся еще и синусоиды, располагающиеся в глубоких слоях миокарда. В них открываются капилляры. Структурно-функциональные особенности этой системы таковы, что они облегчают быстрый сброс венозной крови. Вопрос о наличии в сердце артериовенозных анастомозов дискутируется. Предполагается возможность функц, «шунтирования» — преимущественного кровотока по какому-либо предпочтительному отрезку коронарного русла. Однако мнение о роли К. к. как дополнительного «сбросового» круга кровообращения не подтверждается. Венечные сосуды обильно снабжены симпатическими и парасимпатическими нервами. Иннервированы и капилляры.

Читайте также:  Забитые сосуды сердца могут болеть

Интенсивность К. к. в норме зависит от потребности сердца в кислороде, к-рая очень высока и характеризуется потреблением 6—8 мл кислорода в 1 мин. на 100 г веса сердца в условиях покоя организма. Сердечная мышца обладает способностью максимально экстрагировать кислород из притекающей крови: коронарная венозная кровь содержит 5—7 об.% кислорода, тогда как кровь из полых вен — 14—15 об.% . Вследствие этого всякое повышение энергетического обмена при усилении работы сердца обеспечивается кислородом за счет увеличения объемной скорости коронарного кровотока, к-рая в покое составляет 60—80 мл в 1 мин. на 100 г веса сердца. Прирост кровотока происходит в результате расширения коронарных сосудов, открытия капилляров, а также вследствие подъема АД. Следовательно, в условиях покоя организма коронарные сосуды должны обладать высоким тонусом. Это является одной из особенностей системы К. к.— сочетание высокого уровня базального обмена в миокарде и высокого тонуса сосудов, имеющих поэтому большой расширительный резерв, который позволяет увеличивать кровоток в 5—7 раз при возрастании работы сердца. Прирост потребления кислорода за счет усиления его экстракции кровью имеет меньшее значение и наблюдается обычно только при очень больших нагрузках на сердце.

Кривые, характеризующие фазовые колебания кровотока в левой коронарной артерии собаки (а) в зависимости от давления в левом желудочке сердца (6) и аорте (в): 1— систола; 2— диастола; 3 — максимум давления в левом желудочке и аорте; 4— максимальный кровоток в левой коронарной артерии. Видно, что кривая кровотока напоминает зеркальное отражение кривых давления.

Кривые, характеризующие фазовые колебания кровотока в левой коронарной артерии собаки (а) в зависимости от давления в левом желудочке сердца (6) и аорте (в): 1— систола; 2— диастола; 3 — максимум давления в левом желудочке и аорте; 4— максимальный кровоток в левой коронарной артерии. Видно, что кривая кровотока напоминает зеркальное отражение кривых давления.

Для кровоснабжения миокарда левого желудочка характерны значительные колебания притока крови, связанные с фазами сердечного цикла. Во время диастолы притекает примерно 85% крови, а во время систолы — 15% . Для миокарда правого желудочка систолическая и диастолическая фаза К. к. мало различаются. Фазность Коронарного кровообращения обусловлена тем, что силы внесосудистого сжатия в стенках левого желудочка в ходе систолы создают препятствие для протекания крови в бассейне левой коронарной артерии (рис.).

В норме при учащении сердцебиения несоответствия между возросшей потребностью сердца в кислороде и пропускной способностью сосудов не возникает за счет активного расширения сосудов под влиянием метаболических факторов. Вместе с тем внесосудистое сжатие гемодинамически неэффективными экстрасистолами снижает К. к. Систолические сжатия миокарда способствуют оттоку венозной крови; при каждой систоле кровь фонтанирует из коронарного синуса. Имеются данные, что на всем протяжении коронарного русла нет участка равномерного потока крови: в капиллярах она движется также неравномерно с максимумом скорости в фазе систолы.

Вопросы коронарной микроциркуляции разработаны недостаточно вследствие больших технических трудностей. В связи с наличием в стенках сердца интрамурального давления, возрастающего по направлению к внутренним слоям, сосуды, расположенные в субэндокарде, испытывают наибольшее сжатие. В то же время субэндокардиальные слои миокарда испытывают большее напряжение и соответственно большую потребность в кислороде. Это компенсируется более густой васкуляризацией субэндокарда, наличием большего числа открытых (функционирующий) капилляров, что обеспечивает больший кровоток здесь во время диастолы. В целом отношение субэндокардиальной) кровотока к субэпикардиальному в норме больше единицы. Сосуды с исходно сниженным тонусом теряют способность к реакциям саморегуляции, становясь пассивными трубками, и их подверженность внесосудистому сжатию увеличивается. В этих условиях (исчерпание расширительного резерва) при увеличении частоты сердцебиений К. к. не будет возрастать, оно может даже уменьшаться.

Многие факты свидетельствуют о миогенной природе высокого тонуса коронарных сосудов в норме и о тесной связи миогенных и метаболических механизмов его регуляции. По общепринятому мнению, связующим звеном между работой сердца и коронарным кровотоком служат изменения энергетического метаболизма в сердечной мышце, оказывающие сосудорасширяющее действие. Наиболее энергоемкой считается работа сердца при тахикардии (по сравнению с расходом кислорода на работу сердца при повышенном АД и при высоком ударном объеме). Расширение коронарных сосудов происходит и при недостатке кислорода. Существует мнение, что гипоксия воспринимается миокардом таким же образом, как и увеличение потребности в кислороде при усилении работы сердца, т. е. механизмы рабочей и реактивной гиперемии признаются по существу идентичными. Согласно этой точке зрения, реакция коронарных сосудов определяется только соотношением кровоток/обмен вне зависимости от того, меняется ли доставка кислорода при неизмененной потребности или меняется потребность в кислороде. Однако конкретные механизмы рабочей и реактивной гиперемий, по-видимому, различны, что обусловлено несравнимыми уровнями метаболизма в том и другом случае. Не сравнимы и свойства сосудистой стенки при гипоксии и при рабочей гиперемии, хотя и в том, и в другом случае имеет место расширение сосудов: в первом случае коронарные сосуды становятся пассивными трубками, легко деформируемыми силами внесосудистого сжатия, а во втором — расширяясь, они не теряют своих упругих свойств. Существует мнение, что расширение венечных сосудов при гипоксии может зависеть от непосредственного влияния недостатка кислорода на гладкие мышцы, однако прямых доказательств этого очень мало. Высказываются предположения, что гипоксемия меняет чувствительность гладких мышц сосудов к действию метаболитов, появляющихся в условиях гипоксии. Наиболее аргументированной считается гипотеза аденозиновой регуляции К. к., согласно к-рой недостаток кислорода сопровождается ускоренным распадом АТФ, а продукты этого распада — аденозин, инозин, гипоксантин — обладают сильным коронарорасширяющим действием. Механизм рабочей гиперемии эта гипотеза не объясняет, т. к. при усилении сердечной деятельности продуктов распада аденозина не обнаружено. Метаболическая теория регуляции К. к. рассматривает, помимо продуктов распада АТФ, другие факторы гуморальной природы: калий, интермедиаты цикла Кребса, продукты анаэробного обмена, изменение осмотичности тканевой жидкости, неорганический фосфат. Однако попытки воспроизвести сосудистые реакции введением в коронарное русло того или иного вещества не дали результатов, совпадающих с естественными реакциями. Возможно, что расширение сосудов и при реактивной, и при рабочей гиперемии представляет собой результат однонаправленного действия целого ряда факторов. Коронарорасширяющим действием обладают простагландины А1 и Е1 в фармакол. дозах. Они могут принимать участие в коронародилатации при усилении работы сердца. Кинины также расширяют коронарные сосуды. К коронароконстрикторным гуморальным факторам относят ангиотензин, питуитрин. Коронарную вазодилатацию при усилении работы сердца можно объяснить с помощью гистомеханической гипотезы, выдвинутой В. М. Хаютиным относительно рабочей гиперемии скелетных мышц: сокращение мышечного волокна деформирует сосуд так, что подавляется автоматическая ритмика гладкомышечных элементов его стенки и происходит вазодилатация.

Читайте также:  Сосуд от которого отходят коронарные артерии сердца

Нервная регуляция Коронарного кровообращения во многом остается не до конца исследованной. Даже в эксперименте трудно отделить первичное вазомоторное действие нервов от вторичного, опосредованного через изменение кардио- и гемодинамики, метаболизма миокарда. Раздражение ц. н. с. (ядер гипоталамуса) у животных давало разнообразные реакции коронарных сосудов. У собак с денервированным сердцем коронарная вазомоторная реакция на эмоциональную нагрузку наступала значительно позднее и не так быстро прекращалась при снятии раздражения, как при сохраненной иннервации. Вероятно, в быстром и адекватном приспособлении К. к. к текущим потребностям сердца состоит основная регулирующая роль взаимодействия естественных симпатических и парасимпатических нервных влияний на коронарные сосуды. Хорошо проконтролированными экспериментами установлено, что возбуждение блуждающих нервов расширяет коронарные сосуды. Медиатор холинергического нервного действия — ацетилхолин — также расширяет коронарные сосуды. При раздражении сердечных ветвей симпатических нервов тоже наблюдается расширение коронарных сосудов и увеличение К. к. Однако при этом увеличивается сила и частота сердцебиения, растет скорость сокращения сердечной мышцы и интрамуральное давление — факторы, изменяющие метаболизм миокарда, что само по себе вызывает расширение коронарных сосудов. При возбуждении симпатических нервов иногда наблюдается снижение содержания оксигемоглобина в крови, оттекающей из коронарного синуса, что приводят как показатель недостаточной коронарной вазодилатации или скрытой констрикции сосудов. Некоторые авторы наблюдали первичное повышение сопротивления коронарных сосудов при раздражении симпатических нервов, сменявшееся сильной и длительной вазодилатацией. При снижении температуры тела, уменьшении каким-либо способом интенсивности обмена неврогенная констрикция коронарных сосудов выявляется чаще и отчетливее. Реакции коронарных артерий на раздражение симпатических нервов опосредованы активацией альфа- и бета-адренорецепторов, которые, как полагают, расположены на мембранах гладких мышц сосудов. Коронарная вазодилатация при раздражении симпатических нервов связана с бета-адренергическим рецепторным механизмом, который преобладает над альфа-адренергическим, ответственным за коронароконстрикцию. Конечная реакция определяется количественным преобладанием активации тех или иных рецепторов. При блокировании p-адренергических рецепторов пропранололом раздражение симпатических нервов или введение катехоламинов вызывает коронароконстрикцию альфа-адренергической природы. Адреналин обычно вызывает длительное и сильное расширение коронарных сосудов. Но при этом сильно растет и потребление миокардом кислорода, а также работа сердца. При непосредственном введении катехоламинов в коронарные сосуды вазодилатация предшествует реакции сердца. Блокирование p-адренергических рецепторов выявляет небольшую начальную конструкцию коронарных сосудов при действии катехоламинов. Существует мнение, что соотношение а и p-адренергических рецепторов в коронарных сосудах разного диаметра различно и что это соотношение может меняться под действием температуры, фармакол, агентов и др. Т. о., несмотря на значительный прогресс в изучении регуляции К. к., многие вопросы остаются еще не решенными.

В основе различных форм нарушения К. к. (см. Коронарная недостаточность) лежит возникновение дисбаланса между потребностью миокарда в кислороде и его доставкой кровью. В подавляющем большинстве случаев этот дисбаланс возникает вследствие обструктивных поражений коронарных сосудов атеросклеротическим процессом. При значительных величинах обструкции баланс нарушен уже в покое — кровоток исходно уменьшен. Однако в ряде случаев кровоток в миокарде в покое нормальный, но при усилении работы либо очень мало увеличивается, либо даже снижается. Одной из возможных причин такой динамики коронарного кровотока при нагрузке может быть пассивное состояние стенок сосудов, расширяющихся дистальнее участка стеноза, что делает их подверженными сжатию сокращающимся миокардом. Тогда всякое увеличение нагрузки на сердце будет ограничивать приток крови. При этом особенно страдают субэндокардиальные слои миокарда. По-видимому, реже встречаются случаи, когда причина несоответствия между потребностью и доставкой кислорода лежит в неврогенных спастических реакциях непораженных атеросклерозом коронарных артерий. Уменьшению Коронарного кровообращения способствует также повышенная вязкость крови, увеличивающая сопротивление сосудов. Ограничение утилизации кислорода миокардом может быть связано с факторами биохимической природы, напр. с нарушением процесса диссоциации гемоглобина крови (см. Инфаркт миокарда, Коронарная недостаточность, Стенокардия).

См. также Кровообращение.

Библиография: Коронарная недостаточность, под ред. Е. И. Чазова, с. 9, М., 1977; Новикова Е. Б. Об авторегуляции в коронарной системе, Физиол. журн. СССР, т. 58, № 1, с. 61, 1972, библиогр.; Ногина С. П. Корреляционные отношения артериального давления и коронарного кровотока в ходе длительной стимуляции латеральных ядер гипоталамуса ненаркотизированных животных, там же, т. 60, № 7, с. 1091, 1974, библиогр.; Хаютин Б.М. Механизм управления сосудами работающей скелетной мышцы, в кн.: Пробл. совр. физиол. науки, под ред. E. М. Крепса и В.Н. Черниговского, с. 123, Л., 1971, библиогр.; Ahlquist R. P. Adrenergic receptors, Perspect. Biol. Med., v. 17, p. 119, 1973; Katz A. M. Physiology of the heart, N. Y., 1977; Neural regulation of the heart, ed. by W. C. Randall, N. Y., 1977; The peripheral circulation, ed. by R, Zelis, N. Y., 1975.

Источник