Коррозия сосудов под давлением
Версия для печати
11.1. Защита резервуаров от коррозии должна проводиться на основании анализа условий эксплуатации, климатических факторов, атмосферных и иных воздействий на наружные поверхности резервуаров, а также вида и степени агрессивного воздействия хранимого продукта и его паров на внутренние поверхности. По результатам анализа должен быть разработан отдельный проект или раздел в составе проекта КМ антикоррозионной защиты (АКЗ) резервуара с указанием систем АКЗ, срока их службы при выполнении принятых в проекте технических решений.
Производитель лакокрасочных материалов (ЛКМ) разрабатывает регламент (инструкцию) по нанесению ЛКМ, в котором подробно описывается система АКЗ, применяемые материалы и технология их нанесения.
На выполнение работ по антикоррозионной защите резервуара Производитель работ разрабатывает проект производства работ, в котором отражаются технология подготовки поверхностей резервуара, нанесение грунтовочных и покрывных слоев покрытия, методы по контролю качества, применяемое оборудование с учетом требований Регламента производителя ЛКМ, меры безопасности, противопожарные мероприятия.
11.2. Защиту от коррозии рекомендуется осуществлять применением систем лакокрасочных или металлизационно-лакокрасочных антикоррозионных покрытий, а также применением электрохимических способов.
Для защиты резервуаров от коррозии могут применяться следующие типы ЛКМ со сроком службы не менее 10 лет для внутренней поверхности и 15 лет для наружной поверхности:
– эпоксидные покрытия;
– двухкомпонентные полиуретановые покрытия;
– однокомпонентные полиуретановые влагоотверждаемые покрытия.
В том случае, если нормативный срок службы резервуара превышает расчетный срок службы антикоррозионных покрытий, в техническом задании на проектирование резервуара (Приложение П.2) должны быть установлены припуски на коррозию основных конструктивных элементов – стенки, днища, крыши, понтона, плавающей крыши.
11.3. При выборе типа ЛКМ необходимо отдавать предпочтение материалам с высокой степенью ремонтопригодности и технологичности их применения, а также учитывать погодно-климатические условия во время нанесения антикоррозионных покрытий:
– для эпоксидных и двухкомпонентных полиуретановых покрытий – температура поверхности не ниже +5°С и относительная влажность воздуха не выше 80 %;
– для однокомпонентных полиуретановых влагоотверждаемых покрытий – температура поверхности не ниже 0°С и относительная влажность воздуха до 98 %.
11.4. Системы АКЗ, тип покрытия и материалы для защиты внутренних поверхностей резервуаров определяются с учетом эксплуатационных условий и свойств хранимых жидкостей, а также степени их агрессивного воздействия на конструкции резервуаров в соответствии с таблицей 11.1.
Таблица 11.1
Элементы конструкций резервуаров | Степень агрессивного воздействия среды на стальные конструкции внутри резервуаров | ||
---|---|---|---|
сырой нефти | мазута, дизельного топлива, керосина | бензина | |
Внутренняя поверхность днища и нижний пояс на высоту 1 м от днища | средне-агрессивная | средне- | слабо-агрессивная |
Средние пояса, нижние части понтонов и плавающих крыш | слабо-агрессивная | слабо- | слабо-агрессивная |
Верхний пояс (зона периодического смачивания) | средне-агрессивная | слабо- | средне-агрессивная |
Кровля резервуара, верх и бортовые поверхности понтонов и плавающих крыш | средне-агрессивная | средне- | слабо-агрессивная |
Примечания: 1. Степень агрессивного воздействия мазута принимается для температуры до 90°С. 2. Для нефти и нефтепродуктов с высоким содержанием серы (более 1,8 %) степень агрессивного воздействия на внутреннюю поверхность днища, нижний пояс стенки, кровлю, верх и бортовые поверхности понтонов и плавающих крыш повышается на одну ступень. |
11.5. Антикоррозионные покрытия внутренних поверхностей резервуаров должны удовлетворять следующим условиям:
– быть устойчивыми к воздействию нефти, нефтепродуктов, подтоварной воды;
– обладать хорошей адгезией к грунтовочному слою или основному металлу (в зависимости от технологии нанесения);
– не вступать в реакцию с хранимыми продуктами и не оказывать влияние на их кондицию;
– быть стойкими к растрескиванию;
– обеспечивать совместимость деформаций с корпусом резервуара (с учетом различных толщин стенки по высоте) при заполнении и опорожнении;
– обладать износостойкостью на истирание (в резервуарах с плавающими крышами и понтонами) и долговечностью;
– сохранять адгезионные свойства, механическую прочность и химическую стойкость в расчетном диапазоне температур;
– сохранять защитные свойства при совместной работе с электрохимической, катодной и протекторной защитой;
– быть технологичными при нанесении и соответствовать температуре и относительной влажности воздуха во время выполнения работ;
– удовлетворять требованиям электростатической искробезопасности.
11.6. Наружные поверхности резервуаров, находящиеся на открытом воздухе, должны быть защищены антикоррозионными покрытиями на основе ЛКМ светлого тона с высокой светоотражательной способностью – не менее 98 % по ГОСТ 896-69. Степень агрессивного воздействия среды на наружные поверхности резервуаров определяется температурно-влажностными характеристиками окружающего воздуха и концентрацией в нем коррозионно-активных газов в соответствии со СНиП 2.03.11-85.
11.7. При защите от коррозии наружной поверхности днищ резервуаров следует руководствоваться следующими требованиями:
– устройство фундаментов и основания под резервуар должно обеспечивать отвод грунтовых вод и атмосферных осадков от днища;
– при выполнении гидрофобного слоя из битумно-песчаной смеси по п. 10.3.2 не требуется нанесения защитных покрытий на наружную поверхность днища. Применяемые песок и битум не должны содержать коррозионно-активных агентов.
11.8. В целях активной защиты резервуара от почвенной коррозии и коррозии блуждающими токами рекомендуется применение электрохимической защиты.
Электрохимическая защита наружной поверхности днища, а также внутренних поверхностей днища и нижнего пояса стенки в зоне контакта с донным осадком и слоем подтоварной воды осуществляется установками протекторной защиты (УПЗ) или установками катодной защиты (УКЗ).
Выбор метода защиты осуществляется на основании сравнения технико-экономических показателей.
11.9. При подготовке резервуара для нанесения антикоррозионных покрытий следует руководствоваться требованиями ГОСТ 9.402-2004 «ЕСЗКС. Покрытия лакокрасочные. Подготовка металлических поверхностей перед окрашиванием».
На поверхностях металлоконструкций, подготовленных к выполнению антикоррозионных работ, должны отсутствовать:
– возникшие при сварке остатки шлака, сварочные брызги, наплывы, неровности сварных швов;
– следы обрезки и газовой резки, расслоения и растрескивания;
– острые кромки до радиуса менее 3,0 мм на внутренней и 1,5 мм на наружной поверхностях резервуара;
– вспомогательные элементы, использованные при сборке, монтаже, транспортировании, подъемных работах и следы оставшиеся от приварки этих элементов;
– химические загрязнения (остатки флюса, составов использовавшихся при дефектоскопии сварных швов), которые находятся на поверхности сварных швов и рядом с ними;
– жировые, механические и другие загрязнения.
Сварные швы должны иметь плавный переход к основному металлу без подрезов и наплывов. Все элементы металлоконструкций внутри резервуара, привариваемые к стенке, днищу или крыше, должны быть обварены по контуру для исключения образования зазоров и щелей. Кроме того, все элементы металлоконструкций, находящихся на открытом воздухе, при средне-агрессивном воздействии окружающей среды, также должны быть обварены по контуру для исключения образования зазоров и щелей.
Перед нанесением защитных покрытий все поверхности должны быть очищены от окислов до степени 2 по ГОСТ 9.402-2004 или до степени не ниже Sa 2,5 по ИСО 8501-1, обеспылены и обезжирены. Степень обезжиривания – 1 по ГОСТ 9.402-2004. Степень обеспылевания должна быть не ниже 2 класса по ИСО 8502-3.
11.10. При выполнении антикоррозионных работ должны быть учтены требования к охране окружающей среды и требований действующих правил техники безопасности в строительстве: СНиП 2.03.11, СНиП 1.03-05, ГОСТ 12.3.005, ГОСТ 12.3.016, ГОСТ 12.4.011, СН-245.
11.11. После проведения антикоррозионных работ по результатам пооперационного контроля составляется заключение о качестве нанесенных защитных материалов, разрешающее выполнение следующего этапа работ. После завершения всего комплекса работ по антикоррозионной защите оформляется Акт освидетельствования комплексного защитного покрытия.
<< назад / к содержанию СТО-СА-03-002-2009 / вперед >>
Источник
В процессе эксплуатации сосуд подвержен равномерной и язвенной коррозии глубиной до 2-3 мм. На фоне коррозионных разрушений может происходить коррозионное растрескивание обусловленное в том числе при отсутствии термообработки на углеродистых сталях сосудов. Исследование коррозионного состояния проводится для сосудов отработавшихся 25 лет и более. Первый алгоритм определение скорости коррозии сосудов подразумевает инициирование ингибиторного процесса на образцах с остаточными напряжениями характерными для данного сосуда. Вырезается специальный образец определенной структуры, формы. Второй алгоритм сочетает в себе определение коррозионного состояния образца свидетеля помещенного внутрь сосуда отработавшего 25 лет и более.
Расчеты на прочность сосуда проводятся в случае снижения прочностных свойств металла, изменение упругих свойств и несущей способности сосуда. Расчет на прочность должен проводится с учетом определенной скорости коррозии.
Пневматические испытания сосуда проводятся давлением 1.25 от рабочего при выдержки 10мин и рабочим давлением в течении 45мин. Пневматические испытания могут быть заменены гидравлическими с нейтральной по отношению к аммиаку среде. Дальнейшая эксплуатация сосудов возможна при отсутствии дефектов снижающих прочность и запаса статической прочности. Срок эксплуатации может быть продлен на 10лет для сосудов эксплуатируемых менее 20 лет. Равен 8 годам для сосудов которые находятся в эксплуатации 20-30 лет и 4 года для сосудов в эксплуатации более 30 лет.
Испарители могут быть различной конструкции могут быть кожухотрубные испарители и сосуды которые охлаждаются за счет применения вентиляторов снаружи комплекса аммиачно-холодильных установок. Эксплуатацией является то, что они являются тонкостенными.
Маслосборник имеет малый внутренний и внешний диаметр, имеет максимальный запас прочности по сравнению с другими аммиачными сосудами.
Типовые дефекты работающие под давлением сосудов:
1язвенная коррозия;
2равномерная сплошная коррозия;
3трещины;
4коррозия под слоем краски;
5свищ;
6точечая питинговая коррозия.
Важной характеристикой кранов является грузоподъемность и вылет стрелы, для стреловых кранов. Металлоконструкции кранов должны быть заземлены. Основные механизмы: крюковой механизм выполняют кованным или штампованным и также пластинчатые наборные крюки. Крюки имеют 2 опасных сечения проходящих через оси диаметра зева, наиболее опасным является перпендикулярно оси диаметра зева. Канаты как правило используются стальные крестовой свивки с органическим сердечником(который заправлен смазкой). Блоки применяют чугунные или стальные. Барабаны краны предназначены для навивки канатов, бывают либо чугунные(литые) или стальные. Барабаны бывают однорядной или несколько рядной кладки, используется чаще однорядные. Барабаны бывают гладкие либо с канатами ручья. Тормозные устройства устанавливаются между механизмом муфты и барабаном. На кранах применяют колодочные тормозные устройства они обеспечивают равномерный тормозной момент и имеют больший срок работы. Дисковые тормозные устройства у которых присутствуют тормозные диски и тормозные колодки которые устанавливаются возле этих дисков, и имеют высокую тормозной момент. Муфты применяют для устранения осевого смещения и двух стыкуемых элементов. Для кранов используется гидравлическая или электрические схемы.
Date: 2015-07-24; view: 587; Нарушение авторских прав
Источник
Предыдущая часть документа
Для первого, второго и четвертого случаев п. 6.5.1 коэффициент b определяется по кривой I рис. 6.1. Для третьего случая п. 6.5.1 – по кривой II.
6.6. Определение гарантированного (гамма-процентного) и среднего остаточных ресурсов сосудов и аппаратов
В заключении, подготавливаемом по результатам диагностирования сосудов и аппаратов, должен указываться допускаемый срок их безопасной эксплуатации или гарантированный остаточный ресурс.
Этот ресурс должен рассчитываться для возможного наименее благоприятного режима предстоящей эксплуатации с учетом максимальной возможной погрешности контроля параметров, определяющих техническое состояние сосуда (аппарата).
В тех случаях, когда указанные факторы определяются в детерминированных значениях (однозначно), то гарантированный остаточный ресурс определяется по минимальным (либо максимальным) значениям установленных при диагностировании сосуда параметров.
Например, если при периодическом контроле скорости коррозии стенок сосуда установлены максимальная скорость коррозии , минимальная толщина стенки сосуда , определенная при последнем диагностировании, расчетная толщина стенки , то в этом случае остаточный гарантированный ресурс сосуда по критерию коррозионной стойкости определяется по формуле
(6.8)
В тех случаях, когда прогнозирование ресурса осуществляют по результатам выборочного контроля параметров, имеющих некоторый естественный разброс (см. подразд. 4.2), то при определении остаточного ресурса рассчитывают средний и гамма-процентный остаточные ресурсы.
Средний ресурс представляет собой наиболее вероятное (ожидаемое) значение ресурса сосуда, по которому можно планировать необходимые затраты на ремонт или замену сосуда. Гамма-процентный ресурс определяет минимальное значение ресурса, которое способен отработать сосуд при обеспечении нормативных запасов прочности с доверительной вероятностью , достаточно близкой к единице. При этом остается некоторая вероятность (1 – ) выхода контролируемых параметров за пределы нормативных значений; при реализации этой вероятности потребуется остановка сосуда для проведения внепланового диагностирования.
В соответствии с Методическими указаниями по определению остаточного ресурса потенциально опасных объектов, поднадзорных Госгортехнадзору России (РД 09-102-95) [23], при определении гамма-процентного ресурса рекомендуется принимать значение 90 %.
Формулы для вычисления гамма-процентного и среднего остаточного ресурса сосудов и аппаратов для различных вариантов исходных данных по параметрам технического состояния приведены в Методике прогнозирования остаточного ресурса безопасной эксплуатации сосудов и аппаратов по изменению параметров технического состояния [16].
Если в процессе эксплуатации исходные характеристики материала сосуда могут изменяться под воздействием среды или минусовых температур, то предельное состояние сосуда определяется с учетом хрупкого разрушения или трещиностойкости. Расчет остаточного ресурса в этом случае определяется с учетом подразд. 6.5, 7.1, 7.2, 7.4.
7. Особые требования к диагностированию и определению остаточного ресурса сосудов
7.1. Требования к диагностированию сосудов, находящихся в эксплуатации на открытом воздухе
7.1.1. Сосуды, установленные на открытом воздухе, в холодное время года подвергаются воздействию низких температур, в результате чего температура стенки может стать ниже, чем минимальная разрешенная температура применения стали; это может привести к снижению пластических свойств металла и опасности возникновения и развития хрупких трещин. Это относится в первую очередь к углеродистым и некоторым низколегированным сталям, из которых изготовлено значительное количество сосудов, работающих на открытом воздухе (воздухосборников, цистерн, емкостей для хранения различных химических реагентов и другого оборудования).
7.1.2. Неразрушающий контроль сварных швов сосудов, указанных в п. 7.1.1, должен проводиться в следующих объемах:
для сосудов, работающих в режиме воздействия циклических нагрузок, контролю УЗК или РД методами подлежат сварные швы в объеме 100 %; швы, не подлежащие контролю УЗК или РД (например, патрубки диаметром менее 100 мм, швы с конструктивным зазором и др.), должны быть проконтролированы цветным, магнитопорошковым или вихретоковым методами;
для сосудов, режим нагружения которых является непрерывным, контролю методами УЗК или РД в объеме 100 % должны быть подвергнуты продольные швы обечайки и места пересечений продольных и кольцевых швов; сварные швы приварки патрубков и горловин люков контролируются в объеме 100 %, при этом для контроля швов патрубков диаметром до 100 мм используются цветной, магнитопорошковый или вихретоковый методы (как самостоятельно, так и в сочетании друг с другом).
7.1.3. Применение метода АЭК (см. п. 3.6.3) вместо методов контроля, указанных в п. 7.1.2 настоящих Методических указаний, не рекомендуется. Для получения достоверных данных о склонности дефектов к развитию в условиях эксплуатации сосуда при отрицательных температурах АЭК должен проводиться при температуре стенки, соответствующей минимальной температуре окружающего воздуха. Проведение АЭК при более высоких температурах усложняет получение достоверной информации о склонности металла сосуда к хрупкому разрушению при минимальной рабочей температуре.
7.1.4. При положительных результатах неразрушающего контроля (п. 7.1.2) возможность эксплуатации сосудов при минимальных климатических температурах может быть обоснована:
испытаниями материала сосуда на ударную вязкость при требуемой температуре;
расчетом на прочность.
7.1.5. Образцы для испытаний на ударную вязкость изготовляются из заготовок, вырезаемых из корпуса сосуда (как правило, из каждой царги обечайки и каждого днища; в случаях когда сосуд изготовлен из металла одной плавки, допускается вырезка одной заготовки); рекомендуемый размер заготовки 100х100 мм или 100 мм. Количество образцов для испытаний на ударную вязкость должно быть не менее трех из каждой заготовки. Используются образцы типа 1 по ГОСТ 9454-88 [24] (в случаях когда из-за малой толщины стенки элементов сосуда изготовление образцов типа 1 не представляется возможным, допускается применение образцов типов 2-4). Значение ударной вязкости КСU 3 кгс·м/см. На одном из образцов допускается КСU 2,5 кгс·м/см.
7.1.6. Возможность эксплуатации сосудов при отрицательных температурах ниже минимальных разрешенных температур применения материала сосуда (например, ниже -20 °С для сосуда из стали Ст3) может быть обоснована с учетом требований Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115-96), расчетом с использованием более низких, чем нормативные, допускаемых напряжений (, где – нормативное допускаемое напряжение в соответствии с ГОСТ 14249-89; К = 1,35 для термообработанных и К = 2,85 для нетермообработанных сосудов с толщиной стенки до 36 мм).
7.1.7. Расчет на прочность можно выполнить, рассматривая материал сосуда как хрупкий. Коэффициенты запаса в этом случае принимаются как для чугуна с пластинчатым графитом по ГОСТ 26159-84 [25].
7.2. Особенности диагностирования сосудов и аппаратов, эксплуатирующихся в сероводородсодержащих средах
7.2.1. Характерные повреждения сосудов и аппаратов, эксплуатирующихся в сероводородсодержащих средах.
В сероводородсодержащих средах помимо общей коррозии металла сосуда может происходить коррозионное растрескивание и расслоение металла, вызванные водородом, образующимся в результате электрохимических процессов на поверхности стали при участии сероводорода, углекислого газа и влаги.
В отличие от хлоридного коррозионного растрескивания, которое начинается с поверхности, сероводородное растрескивание и расслоение могут начаться внутри металла, вдалеке от поверхности.
Сероводородное растрескивание под напряжением (СРН) характерно для сталей аустенитного и аустенитно-мартенситного классов. Водород в этих сталях облегчает протекание мартенситного превращения и зарождение трещин. Наиболее часто СРН наблюдается в зонах термического влияния сварного шва при рН водной фазы < 5, в наиболее опасном интервале температур 30-40 °C. Кроме того, склонность к СРН определяется особенностью структуры самого металла: наличием структурных неоднородностей, количеством и распределением неметаллических включений, химическим составом.
Сероводородное расслоение (СР) металла проявляется в образовании трещин в направлении прокатки стали даже в отсутствие внешних напряжений. Обычно вследствие этого возникает расслоение металла и образуются “пузыри” на поверхности. Иногда трещины распространяются ступеньками – такой вид растрескивания называют ступенчатым растрескиванием, инициированным водородом.
Сероводородному расслоению подвергаются в основном стали с пределом прочности от 300 до 800 МПа, в то время как сероводородное коррозионное растрескивание под напряжением более характерно для высокопрочных сталей.
Анализ разрушений оборудования, эксплуатирующегося в сероводородсодержащих средах, показал, что, как правило, сосуды и трубопроводы из углеродистых низколегированных материалов подвергаются расслоению, в отдельных случаях наблюдается растрескивание сварных соединений.
При наличии признаков сероводородной коррозии для проведения диагностирования сосудов рекомендуется использовать Методику диагностирования технического состояния сосудов и аппаратов, эксплуатирующихся в сероводородсодержащих средах, утвержденную Минтопэнерго России 30.11.93 г. и согласованную с Госгортехнадзором России [26]. Ниже указаны основные методы выявления характерных повреждений сосудов и критерии их оценки, приведенные в этой методике.
Оценка прочности сосудов, работающих в контакте с сероводородсодержащими средами, должна проводиться по РД 26-02-62-88 [50].
7.2.2. Проведение неразрушающего контроля.
При проведении неразрушающего контроля сосудов и аппаратов, эксплуатирующихся в сероводородсодержащих средах, дополнительно к видам контроля, указанным в разд. 3, выполняется контроль стенок сосудов на наличие в них расслоений и вспученных участков.
Участки с вспученной поверхностью могут быть обнаружены визуальным контролем с помощью светового луча, направленного касательно к поверхности. Такому же осмотру подвергают сварные соединения для обнаружения на них трещин. Сварные швы необходимо исследовать на участках наибольших напряжений. Чаще всего трещины возникают поперек шва. Для выявления трещин применяют методы, изложенные в пп. 3.6.2, 3.6.5.
Для обнаружения расслоений используют в основном ультразвуковую дефектоскопию и толщинометрию. Эти методы позволяют выявить дефекты на любой глубине в толще стенки аппарата. Надежность выявления дефектов (расслоений) обеспечивается сплошным сканированием поверхности. При выборочном контроле рекомендуется контролировать не менее 5 точек на 1 м поверхности. В случаях обнаружения пораженных расслоением участков необходимо определить размеры пораженных участков (оконтурить) путем сканирования или пошагового контроля участков поверхности ультразвуковыми методами (см. пп. 3.6.1, 3.6.4).
7.2.3. Оценка результатов контроля участков, склонных к сероводородному растрескиванию.
Согласно вышеуказанной Методике [26] предусматривается три уровня контроля повреждений. При первом уровне – применяется стандартный ультразвуковой эхо-метод (по ГОСТ 22727-88) [27], при втором уровне – в дополнение к первому используется метод ультразвукового сканирования с помощью компьютерных дефектометров [28], при третьем уровне – в дополнение ко второму выполняются специализированные расчеты в рамках структурной механики разрушения, водородная и акустико-эмиссионная диагностика высокого разрешения. При каждом уровне контроля выделяются три области параметров, определяющих состояние сосуда: исправное, неисправное, либо состояние неопределенности, при котором решение в рамках данного уровня невозможно. Если измеренные параметры попадают в области исправного или неисправного состояния, принимается решение и диагностирование заканчивается. Если измеренные параметры оказываются в области неопределенности, диагностирование должно быть продолжено на следующем уровне в соответствии с Методикой [26].
Согласно критериям первого уровня контроля сосуд соответствует исправному состоянию, если условные размеры выявленных в металле несплошностей в целом не превышают норм технической документации на поставку металлопроката или поковок для изготовления оборудования, а именно:
а) условные размеры в плоскости изолированных несплошностей или их скоплений не выходят за пределы круга диаметром 50 мм (изолированными считаются несплошности, если расстояние от каждой из них до соседней в плоскости больше характерного условного размера каждого из них, а по глубине удаление превышает 20 % их характерных условных размеров в плоскости);
б) в областях, примыкающих к сварным швам на расстоянии менее половины толщины стенки, несплошности не выходят за пределы круга диаметром 20 мм;
в) условная толщина зоны несплошностей не превышает 5 % номинальной толщины стенки;
г) средняя глубина залегания зоны несплошностей от ближайшей поверхности не меньше чем половина характерного размера в плоскости;
д) общая площадь, занятая несплошностями, не превышает 1 % поверхности контроля.
Если размеры выявленных в металле несплошностей не превышают вышеуказанных норм, то последующая эксплуатация сосуда может осуществляться в обычном режиме.
Если размеры выявленных дефектов и повреждений превышают эти нормы, то для определения возможности дальнейшей безопасной эксплуатации сосуда требуется дополнительное исследование в соответствии с вышеуказанной Методикой [26] с применением ультразвукового сканирования, с использованием компьютерных дефектометров [28].
При этом последующая эксплуатация должна производиться в подконтрольном режиме, основанном на рекомендациях специализированной организации.
Следующая часть документа
Источник