Криогенные сосуды правила безопасности

Криогенные сосуды правила безопасности thumbnail

Портал «Опасный груз» – объединение участников рынка опасных веществ и изделий.

14.1. Все продукты разделения воздуха, поступающие потребителю, должны иметь соответствующие сопроводительные документы.

14.2. Жидкие криогенные продукты разделения воздуха

14.2.1. Устройство и размещение технических устройств с жидкими ПРВ должно соответствовать проекту и требованиям настоящих Правил.

14.2.2. В производственных помещениях потребителей ПРВ допускается размещать сосуды с жидкими продуктами суммарной вместимостью не более 10 м3 при условии, если указанные сосуды технологически связаны с техническими устройствами, расположенными в данном производственном помещении. В помещениях, отнесенных к категориям А, Б, В по взрывопожарной и пожарной опасности, размещение сосудов с жидким кислородом не допускается.

Сосуды с жидкими ПРВ суммарной вместимостью более 10 м3 необходимо размещать в отдельных помещениях или вне здания.

14.2.3. Сброс газообразных ПРВ при наполнении сосудов, размещенных в помещениях, производится за пределы здания с соблюдением требований пп.4.48, 4.49 настоящих Правил.

14.2.4. Сосуды газификаторов и другие стационарные сосуды с жидкими ПРВ, установленные снаружи зданий потребителей, и в которые производится непосредственный слив жидких продуктов из транспортных цистерн или из которых непосредственно производится наполнение транспортных цистерн, следует располагать около стен, не имеющих проемов на расстоянии не менее 1,0 м от габаритов сосуда.

Оконные проемы на расстоянии 6,0 м в каждую сторону и на 3,0 м вверх от габаритов сосудов не должны иметь открывающихся элементов.

На сосуды, у которых разъемы сливоналивных устройств расположены от здания на расстоянии более 9,0 м, эти требования не распространяются.

14.2.5. Криогенные сосуды (сосуды Дьюара) предназначенные для хранения или работы с жидкими ПРВ, кроме сосудов вместимостью до 15 л, следует оснащать предохранительными устройствами.

14.2.6. Эксплуатация криогенных сосудов и технических устройств различного назначения, оснащенных сосудами Дьюара, осуществляется в соответствии с технологической инструкцией, учитывающей требования проекта, настоящих Правил и документации разработчика.

14.2.7. В помещениях с естественной вентиляцией допускается работа с открытыми сосудами жидких ПРВ в том случае, если объем помещения в м3 превышает объем жидкости, находящейся в сосудах в литрах, не менее чем в 7 раз. Если указанное соотношение не выполняется, то в помещении должна предусматриваться постоянно действующая приточно-вытяжная вентиляция, обеспечивающая объемную долю кислорода в воздухе помещения не менее 19 и не более 23%.

Кроме того, в указанном помещении должен быть установлен автоматический газоанализатор, подающий световой и звуковой сигналы об отклонении от норм содержания кислорода в воздухе помещения. При подаче сигнала обслуживающий персонал должен принять меры для приведения в норму содержания кислорода в помещении (включение аварийной вентсистемы, проветривание помещения, закрытие источника газовыделения и др.) и покинуть помещение. Продолжение работ допускается только после достижения нормального содержания кислорода в воздухе.

14.2.8. Жидкий азот в качестве хладоагента может применяться без специальных мер по предупреждению загорания и взрыва, если объемная доля кислорода в нем не превышает 30%. При работе с жидким азотом, содержащим более 30% кислорода, должны быть предусмотрены такие же меры по безопасности, как и при работе с жидким кислородом (п.14.2.7 настоящей главы).

14.2.9. Работы с жидким азотом в открытых ваннах осуществляются в соответствии с требованиями технологических инструкций, при выполнении контроля за содержанием кислорода в жидкости одним из следующих способов:

а) проведением анализов на объемную долю кислорода в паровой фазе над зеркалом жидкости. Объемная доля кислорода не должна превышать 10%;

б) проведением анализов жидкого азота после его газификации.

При использовании стационарных ванн для работы с жидким азотом анализы должны производиться непрерывно автоматическим газоанализатором.

14.2.10. Детали, подвергаемые охлаждению в ваннах с жидким азотом, необходимо предварительно обезжирить и высушить.

14.2.11. Ванны для охлаждения деталей жидким азотом подлежат отогреву при объемной доле кислорода в азоте более 30% и периодически обезжириваются.

Над ваннами для охлаждения деталей жидким азотом необходимо предусматривать местные отсосы.

14.3. Газообразные продукты разделения воздуха

14.3.1. Снабжение потребителей газообразными ПРВ производится по трубопроводам от КРП, реципиентов, газификаторов, разрядных рамп или непосредственно от ВРУ, размещаемых, как правило, на промышленной площадке потребителей, в соответствии с проектом и требованиями настоящих Правил.

14.3.2. Допускается снабжение потребителей газообразными продуктами разделения воздуха непосредственно из баллонов, расположенных около потребителей.

Для постоянных потребителей небольших количеств продуктов разделения воздуха (газоанализаторы, хроматографы и др.) у каждого места потребления допускается размещать не более двух баллонов вместимостью 40 л, заполненных ПРВ под давлением до 20 МПа. Расстояние между каждой парой баллонов должно быть не менее 12,0 м на каждом уровне размещения баллонов.

Баллоны следует размещать в металлических шкафах и закреплять. Шкафы с баллонами должны запираться на замок.

14.3.3. Перемещение баллонов грузоподъемными устройствами и транспортными средствами осуществляется в соответствии с технологической инструкцией.

14.3.4. При погрузке и разгрузке баллонов не допускается их сбрасывание, соударение.

14.3.5. Доставка баллонов с ПРВ потребителям осуществляется в соответствии с правилами перевозки автомобильным транспортом инертных газов и кислорода (сжатых и жидких), а железнодорожным, водным и воздушным транспортом – в соответствии с отраслевыми НТД.

14.3.6. Допускается транспортирование баллона с кислородом и баллона с горючим газом на специальной тележке к рабочему месту.

Читайте также:  Сужение кровеносных сосудов от чего бывает

14.3.7. В цехах-потребителях кислорода необходимо исключить возможность перетекания кислорода в системы (коммуникации и технические устройства), заполненные горючими газами или в системы, не связанные с осуществляемым технологическим процессом.

При разрядке кислородных баллонов остаточное давление в них должно исключать перетечку горючих газов из подключенной системы. Не допускается снижение давления в баллоне ниже 0,05 МПа.

14.3.8. На объектах потребления не допускается выполнять ремонт баллонов, производить разборку и ремонт вентилей.

14.3.9. При периодическом отборе ПРВ из трубопроводов отключающая арматура для присоединения гибких трубопроводов (шланги, рукава) должна размещаться в металлическом шкафу с отверстиями для вентиляции.

После прекращения работ шкаф следует закрывать на замок. Сигнально-предупредительные надписи и опознавательная окраска шкафов выполняется в соответствии с проектом.

14.3.10. Сброс ПРВ в производственное помещение при продувке технических устройств и коммуникаций не допускается.

Постановление Федерального горного и промышленного надзора России от 24 апреля 2003 г. N 24 “Об утверждении “Правил безопасности при производстве и потреблении продуктов разделения воздуха” (читать дальше)

Источник

Скачать статью (691 KB)

Первые капли жидкого кислорода получены в далеком 1877 году.

Луи Поль Кайете́ французский физик и изобретатель, член Парижской академии наук во время эксперимента, доведя давление кислорода в сосуде до 300 атмосфер и подвергнув его охлаждению до −29°C, окружил его испаряющимся диоксидом серы. Когда давление резко упало, он наблюдал образование облачка конденсирующихся капель кислорода. Кайете предоставил Академии наук отчёт о получении жидкого кислорода 24 декабря 1877 года.

Криогенные сосуды правила безопасности

Рисунок 1. Луи Поль Кайете

Криогенные сосуды правила безопасности

Рисунок 2. Аппарат Кайете для сжижения газов

В 1877 году швейцарский физик Рауль-Пьер Пикте первым получил жидкий азот. В 1876 году Пикте начал эксперименты в области ожижения газов, не обладая существенным опытом в инженерной деятельности. Тем не менее, предложенная Пикте установка отличалась сложностью и оригинальностью решения. Был разработан «каскадный» метод ожижения газов и, почти одновременно с французским инженером Кайете, Пикте получил (1877 г.) жидкий кислород при температуре −140°С, достигнутой при использовании сернистой и угольной кислот. В дальнейшем Пикте ожижал также воздух, азот, водород и углекислый газ.

Пикте разработал рабочее вещество для холодильных установок, состоящее из смеси двух разных компонентов. Идея смесевых хладагентов со временем была развита и использована в различных холодильных и криогенных установках.

Криогенные сосуды правила безопасности

Рисунок 3. Рауль-Пьер Пикте

В настоящее время в промышленности широко применяются установки с криогенными продуктами – веществами или смесями веществ, находящихся при криогенных температурах от 0 до 120 К (от -273°С до -153°С). К основным криогенным продуктам относятся: азот, кислород, водород, гелий, аргон, неон и метан.

При производстве, хранении, транспортировании и использовании криогенных продуктов образуются опасные и вредные производственные факторы, воздействию которых подвержен персонал, обслуживающий криогенное оборудование или находящийся рядом с ним.

Работа при криогенных температурах требует особого внимания к конструкционным материалам, так как в таких условиях у многих из них существенно изменяются физико-механические свойства. Для широко применяемых конструкционных материалов при понижении температуры такие характеристики, как временное сопротивление, предел текучести, предел усталости, как правило, повышаются, но понижаются показатели пластичности и, что самое важное, ударная вязкость. В результате у многих металлических материалов при низких температурах появляется склонность к хрупкому разрушению (разрушению без заметной макропластической деформации, явление хладо-ломкости). К таким материалам относятся углеродистые и низколегированные стали. При этом ударная вязкость понижается настолько, что применение стали этой группы при температурах ниже 230К недопустимо.

Криогенные жидкости хранятся и транспортируются в специальных сосудах с качественной теплоизоляцией (порошково-вакуумной или экранно-вакуумной). О том, для какого криогенного продукта предназначен сосуд, свидетельствуют окраска сосуда и надпись на нем. При необходимости их применения для другого криогенного продукта выполняются специальные, оговоренные в технической документации изготовителя, мероприятия, включающие, например, при переходе с азота на кислород обезжиривание внутренних полостей и испарителя.

При непосредственном контакте человеческого тела с криогенной жидкостью, её парами, охлажденной или газовой средой, частями оборудования, трубопроводами, инструментом и конструкциями под действием криогенной температуры происходит образования кристаллов льда в живых тканях, что может вызвать их разрыв. Контакт с криогенными продуктами может вызвать ожог участка тела, глаз (вплоть до потери зрения) и легкие обморожения в результате глубокого охлаждения участков тела. К тому же, некоторые криогенные продукты являются токсичными для человека (см. табл. 1).

Табл. 1. Токсикологическая характеристика криогенных продуктов.

КислородВдыхание чистого кислорода в течение 5ч приводит к отравлению. Граница токсичности находится при концентрации около 60% (при нормальном давлении).Дыхательные пути
МетанТоксичен. Вызывает головные боли, слабость, рвоту, снижение кровеносного давления, потерю сознания.Органы дыхания300
Азот, аргон, неон, гелийПри атмосферном давлении своим присутствием снижают парциальное давление кислорода воздуха. Аргон, гелий, неон при применении под давлением действуют как наркотики.Органы дыхания
ВодородХимически активен, чрезвычайно опасен.Органы дыхания

Основные опасности при работе с криогенными продуктами:

  • низкие температуры криогенных продуктов;
  • обмораживание при контакте с криогенными продуктами, вследствие глубокого охлаждения;
  • ожоги легких при вдыхании паров, ожоги открытых участков тела и глаз при соприкосновении с предметами и оборудованием криогенных установок;
  • возможное повышение давления при хранении и транспортировке криогенных продуктов, термическое деформирование, увеличение хрупкости металла при низкой температуре и разрушение оборудования из-за взрыва;
  • утечки криогенных продуктов, вследствие разгерметизации оборудования.
Читайте также:  Что такое повреждение внутренней поверхности сосудов

Специфическими вредными и опасными производственными факторами являются:

  • наличие в воздухе токсичных паров и газов криогенных продуктов превышающих ПДК;
  • контакт органических веществ и материалов с криогенными жидкостями – окислителями и контакт криогенных жидкостей, горючих газов с кислородом или воздухом, что приводит к возгораниям, пожарам или взрывам.

Для достижения безопасности в работе криогенных установок необходимо соблюдение целого комплекса профилактических и организационно-технических мер.

Помещения, в которых ведется работа или хранятся криогенные продукты, должны быть сконструированы с учетом высокой пожаро- и взрывоопасности продуктов, оборудованы приточно-вытяжной вентиляцией (приток воздуха должен быть сверху, а вытяжка – снизу). Для удаления пролитых криогенных продуктов вдоль стен оборудуются специальные сливные каналы с уклоном не менее 1: 100 / 1: 500, сток в сторону аварийной вентиляции. Помещение должно быть оборудовано автоматическим включением вентиляции при достижении концентрации криогенных продуктов выше допустимой.

Криогенные установки, для снижения опасности от превышения давления, должны быть оборудованы предохранительными устройствами (клапанами, мембранами), запорной арматурой. Применение компенсационных устройств из материалов с равнозначными коэффициентами линейного расширения позволяет снизить опасность при возникновении критических деформаций из-за резкого нагрева или охлаждения.

При хранении и транспортировке криогенных жидкостей необходимо обеспечить высококачественную теплоизоляцию (порошково-вакуумную или экранно-вакуумную). Сосуды для хранения и транспортирования криогенных жидкостей должны быть оборудованы предохранительными клапанами, разрывными мембранами, а работающие под избыточным давлением – манометрами.

Должны соблюдаться нормы заполнения сосудов криогенными жидкостями (табл. 2), установленные правилами. Наружная поверхность емкостей для криогенных жидкостей должна быть окрашена светоотражающей белой или алюминиевой (серебристой) краской, иметь надписи и отличительные полосы.

Табл. 2. Нормы заполнения сосудов криогенными жидкостями.

Водород0,06515
Гелий0,119
Кислород1,080,926
Азот0,771,3

Хранение и переноску криогенных продуктов в небольших количествах следует производить в сосудах Дьюара. Для переливания необходимо использовать подставки, а при переливании в посуду применять специальные лейки.

При работе с сосудами Дьюара следует учитывать, что взрывы сосудов Дьюара происходят вследствие плотно закрытой горловины сосуда; закупорки горловины льдом; нарушения вакуумной изоляции сосуда и резкого повышения температуры внутри сосуда; расширения поглощенных адсорбентом газов при обогреве сосудов.

Запрещается:

  • перевозить сосуды Дьюара в пассажирском лифте;
  • допускать присутствие посторонних лиц на площадке, где находятся сосуды Дьюара во время их заполнения жидкими газами;
  • оставлять на отогрев сосуды Дьюара, потерявшие герметичность, там, где могут находиться люди;
  • в местах нахождения сосудов Дьюара курить, пользоваться открытым огнем, хранить горючие материалы и вещества.

Запрещается также ремонтировать неотогретые сосуды и содержащие криогенные продукты.

При работе с криогенными продуктами следует применять специальную обувь, одежду, рукавицы и защитные очки, исключающие попадание криогенных продуктов на открытые участки тела. Верхняя одежда должна быть закрытой, а брюки прикрывать обувь.

Для исключения соприкосновения персонала с оборудованием, имеющим низкую температуру, применяют герметизацию и термоизоляцию, защитные ограждения. На оборудовании должны быть вывешены знаки безопасности.

Криогенное оборудование большого объема и большого рабочего давления должно быть зарегистрировано в органах Ростехнадзора и проходить техническое освидетельствование при пуске в работу, а также, и периодически. Работать с криогенным оборудованием допускаются лица не моложе 18 лет после прохождения обучения и аттестации комиссией с выдачей удостоверения на право производства работ. Периодическая проверка знаний производится не реже 1 раза в год.

При сливе сжиженного природного газа и при заправке автотранспорта как сжиженным, так и компримированным природным газом необходимо учитывать риски накопления электростатических зарядов. Электрические заряды, накопленные на диэлектриках вследствие трения их друг о друга или о металл, называют статическим электричеством. При трении в местах соприкосновения на поверхности диэлектрика возникает электрический заряд большой плотности, который вследствие малой электропроводности диэлектрика исчезает весьма медленно.

Электризация возникает также посредством индукции. На металле проявляется электрический заряд противоположного знака, который растекается с равномерной плотностью по его поверхности. Явления электризации возникают в самых разных условиях: при движении жидкости по трубопроводам; при сливе, наливе, перекачке и переливании жидкости падающей струей; при движении по трубопроводам и выходе из сопла сжатых и сжиженных газов; при перемешивании веществ в смесителях; при фильтрации воздуха и газа; при работе ременных передач, выполненных из различных непроводящих материалов, при измельчении, обработке и транспортировке материалов на органической или полимерной основе и т.п.

Разность потенциалов при электризации диэлектриков может достигать очень высоких напряжений. Так, например, при перекачивании бензина через трубопровод, имеющий изолированный участок, величина потенциалов между изолированным участком трубопровода и землей колеблется в пределах 1460-14600 В.

Накопившаяся энергия представляет большую опасность и может проявиться в виде искрового разряда. Освободившаяся в виде искры энергия 0,01 Дж способна обусловить возникновение пожара и взрыва. Опасность искрового разряда в воздухе возникает уже при напряжении 300 В. Для выравнивания потенциалов и предотвращения искрения все параллельно идущие трубопроводы, при расстоянии между ними до 100 мм, следует соединить между собой перемычками через 20-25 м. Каждая система оборудования и трубопроводов должна быть заземлена не менее чем в двух местах. Наличие заземления необходимо проверять мегомметром или тестером не реже одною раза в шесть месяцев и после каждого ремонта оборудования.

Читайте также:  К чему может привести ослабление сосудов

Для снятия электростатических зарядов, возникающих при наливе, перекачке и транспортировке сжиженного природного газа, этилена или водорода, все металлические насосы, трубопроводы, цистерны и другие устройства необходимо металлически соединить между собой посредством специального соединения, либо плотного контакта с объектом, если конструкция системы сама хорошо заземлена.

При защите жидких и газообразных веществ от статического электричества необходимо знать, что более интенсивная электризация характерна для жидкостей, которые имеют более высокое электрическое сопротивление. При электрической проводимости менее 109 Ом/см жидкости склонны к сильной электризации.

Интенсивность электризации прямо пропорциональна скорости подачи жидкого продукта. Подача сплошной и плавной струей способствует электризации в меньшей степени, чем при свободно падающей струе с разбрызгиванием. Разность потенциалов при свободном падении струи жидкости в емкость, а также при длительном времени и большой скорости истечения жидкостей достигает 18 000-20 000 В.

Электризация жидкости возникает и усиливается лишь в некоторых наиболее благоприятных для электризации местах (клапаны, насосы, изменения сечения трубопровода). На других участках электризованная жидкость или теряет свои заряды, или только сохраняет полученный заряд.

Значительное накопление статического электричества может происходить на технологическом оборудовании и представляет опасность для окружающих.

Для предупреждения возможности опасных искровых разрядов с поверхности оборудования предусматривают следующие меры:

  • заземление всех металлических и электропроводящих частей технологического оборудования;
  • уменьшение удельного поверхностного электрического сопротивления материалов-диэлектриков; повышение относительной влажности воздуха до 65 – 70% (если это позволяет условия производства);
  • охлаждение электризующих поверхностей до температуры на 10 °С ниже температуры окружающей среды;
  • нейтрализация разрядов статического электричества путем ионизации воздуха рабочего пространства (воздействие сильного электрического поля или радиоактивного излучения);
  • применение нейтрализаторов коронного разряда;
  • применение гидрофильных добавок при возможности увлажнения продуктов и материалов или применение гидрофобных добавок с высокими электропроводными свойствами;
  • изменение режима технологического процесса (ограничение скорости транспортировки, обработки, истечения), замена взрыво- и пожароопасных веществ на менее опасные и т.д.
  • применение токопроводящих полов.

Покрытие пола и обувь считаются электропроводящими, если сопротивление между электродом, установленным на полу, и землей или между электродом внутри обуви и наружным электродом не превышает 106 Ом/см2.

Заряды статического электричества могут накапливаться на теле человека, особенно при пользовании обувью с непроводящими электричество подошвами, одеждой и бельем из шерсти, шелка и искусственных волокон, при передвижении по непроводящему покрытию пола и при выполнении ряда ручных операций с веществами-диэлектриками.

Высокое поверхностное сопротивление тканей человека затрудняет стечение зарядов, которые накапливаются на теле, и человек длительное время может находиться под большим потенциалом. Потенциал изолированного от земли тела человека может достигать 7000 В и более, а максимальная энергия, освобождающаяся при искровом разряде с него, может составлять 2,5-7,5 мДж. Человек под воздействием электростатических разрядов испытывает неприятные ощущения, удары, теряет равновесие.

При работе, как с кислородом, так и с взрывоопасными криогенными жидкостями, такими как природный газ, следует избегать ношения одежды из синтетических материалов (нейлона, перлона и т.п.) и шёлка, а также не рекомендуется ношение колец, браслетов, на которых аккумулируются заряды статического электричества. При выполнении работ в зоне с возможным накоплением статического электричества рекомендуется его отводить при помощи электропроводной обуви, антистатического халата, электропроводной подушки стула, легко снимаемых электропроводных браслетов, соединенных с землей через сопротивление 105 – 107 Ом. Хорошими электропроводными свойствами обладают покрытия из бетона, антистатического линолеума, электропроводной резины и т.д.

Каждое производственное предприятие стремится к обеспечению безопасности, как своих сотрудников, так и оборудования, продукции и услуг в целом. Это во многом влияет на имидж предприятия и уровень доверия к нему клиентов, а также является гарантом высокой конкурентоспособности.

С момента основания компания ООО «Мониторинг Вентиль и Фитинг» (MV&F) активно развивает криогенное направление. Изготавливается оборудование для криогенного применения: трубопроводы и арматура с экранно-вакуумной изоляцией (ЭВИ), атмосферные испарители, электрические нагреватели и испарители, насосные установки, криоадсорбционные установки, криогенные испытательные стенды.

Направления деятельности ООО «Мониторинг Вентиль и Фитинг» (MV&F):

  • поставка широкого спектра криогенного оборудования;
  • поставка комплектующих и запасных частей к криогенной технике;
  • проектирование криогенных комплексов;
  • монтажные и пусконаладочные работы;
  • сервисное и техническое обслуживание.

Криогенные сосуды правила безопасности

Рисунок 4. Криогенный насос производства ООО «Мониторинг Вентиль и Фитинг»

Если Вам нужно решить задачу, связанную с применением криогенных жидкостей, или Вам нужна помощь в обеспечении безопасности Вашего криогенного процесса, Вы всегда можете обратиться за консультацией к специалистам компании ООО «Мониторинг Вентиль и Фитинг». Мы всегда помогаем как конечным потребителям, так и проектным, монтажным и газовым компаниям.

>>> АВТОР СТАТЬИ
Дияна Даянова,
руководитель службы охраны труда
ООО «Мониторинг Вентиль и Фитинг»

Источник