Криогенный сосуд для гелия

Криогенный сосуд для гелия thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июля 2020; проверки требуют 2 правки.

Сосу́д Дью́ара – сосуд, предназначенный для длительного хранения веществ при повышенной или пониженной температуре. Перед помещением в сосуд Дьюара вещество необходимо нагреть или охладить. Постоянная температура поддерживается пассивными методами, за счёт хорошей теплоизоляции и/или процессов в хранимом веществе (например, кипение). В этом основное отличие сосуда Дьюара от термостатов, криостатов.

История изобретения[править | править код]

Первый контейнер для хранения сжиженных газов был разработан в 1881 году немецким физиком А. Ф. Вейнхольдом. Он представлял собой стеклянный ящик с двойными стенками с откачанным из межстеночного пространства воздухом и был использован физиками К. Ольшевским и С. Врублёвским для хранения жидкого кислорода[1][2].

Шотландский физик и химик сэр Джеймс Дьюар в 1892 году усовершенствовал стеклянный ящик Вейнхольда, превратив его в двустенную колбу с узким горлом для уменьшения испарения жидкости. Межстеночное пространство посеребрено и из него откачан воздух. Свой сосуд Дьюар впервые продемонстрировал перед аудиторией на публичной лекции 20 января 1893 года[3]. Всю эту хрупкую конструкцию Дьюар подвесил на пружинах в металлическом кожухе. Благодаря своей разработке Дьюар первым смог получить и сохранить жидкий (1898)[4] и даже пытался получить твёрдый (1899) водород[5].

Первые сосуды Дьюара для коммерческого использования были произведены в 1904 году, когда была основана немецкая фирма Thermos GmbH по производству термосов.

Устройство[править | править код]

Оригинальный сосуд Дьюара представлял собой стеклянную колбу с двойными стенками, из пространства между которыми выкачан воздух. Для уменьшения потерь тепла через излучение обе внутренние поверхности колбы были покрыты отражающим слоем. Дьюар использовал в качестве отражающего покрытия серебро. Подобная конструкция применяется и в современных дешёвых бытовых термосах.

Современные конструкции[править | править код]

Схема сосуда Дьюара

1 – подставка; 2 – вакуумированая полость; 3 – теплоизоляция; 4 – адсорбент; 5 – наружный сосуд; 6 – внутренний сосуд; 7 – горловина; 8 – крышка; 9 – трубка для вакуумирования

Современные сосуды Дьюара конструктивно выполнены несколько иначе. Внутренний и внешний сосуды делают из алюминия или нержавеющей стали. Теплопроводность материала не важна, а прочность и вес играют большую роль. Горловина соединяет внутренний и внешний сосуды. В дьюарах объёмом до 50 л внутренний сосуд крепится только на горловине и она испытывает большие механические нагрузки. Также к ней предъявляются высокие требования по теплопроводности. То есть горловина должна быть прочной, но тонкой. В обычных сосудах горловину делают из нержавеющей стали. В высококачественных сосудах Дьюара горловина изготовляется из прочного армированного пластика. При этом возникает проблема вакуумноплотного крепления металла и пластика. Снаружи внутренний сосуд покрывается адсорбентом, который при охлаждении поглощает остаточные газы из вакуумной полости. Для уменьшения теплопотерь внутренний сосуд покрывают дополнительной теплоизоляцией. К крышке дьюара, для снижения конвекционной теплопередачи прикрепляют пенопластовый цилиндр, который негерметично закрывает горловину. Вакуумную полость откачивают до давления 10−2 Па. От серебрения внутренних поверхностей отказались и заменили его полировкой.

Современные сосуды Дьюара имеют низкие потери от испарения: от 1,5 % в сутки для больших ёмкостей до 5 % в сутки для малых объёмов.

Гелиевые сосуды Дьюара[править | править код]

Схема сосуда Дьюара для гелия

1 – горловина для заливки азота; 2 – головка со штуцерами; 3 – горловина гелиевой ёмкости; 4 – ёмкость для жидкого азота; 5 – тепловые экраны; 6 – ёмкость для жидкого гелия; 7 – теплоизоляция; 8 – адсорбент

Гелий имеет очень маленькую теплоту испарения. Поэтому для снижения теплопотерь в гелиевых дьюарах применяются тепловые экраны, охлаждаемые жидким азотом. Экраны изготавливают из материалов, хорошо проводящих тепло (медь). Такой сосуд Дьюара имеет две горловины: для жидких азота и гелия. Гелиевая горловина оборудована специальными штуцерами для газосброса, подсоединения сифона, манометра, клапана. Гелиевый дьюар нельзя наклонять, он всегда должен находиться в вертикальном положении.

С развитием техники многослойной экранно-вакуумной термоизоляции на рынке появились предложения гелиевых сосудов Дьюара, в которых не используется охлаждение жидким азотом. По утверждениям производителей, в таких сосудах Дьюара потери на испарение составляют 1 % в день для ёмкостей на 100 л.

Азот испаряется из сосуда Дьюара

Назначение и применение[править | править код]

  • Для сохранения температуры еды и напитков используются бытовые сосуды Дьюара – термосы.
  • В лабораториях и в промышленности сосуд Дьюара используется для хранения криожидкостей, чаще всего жидкого азота.
  • В медицине и ветеринарии специальные сосуды Дьюара используются для длительного хранения биологических материалов при низких температурах.
  • В геофизике в сосуды Дьюара помещают электронные компоненты и кристаллы при работах в горячих скважинах (от 400К).
  • В космонавтике. Детектор прибора NICMOS, установленного на космический телескоп Хаббл, был помещён в сосуд Дьюара с использованием в качестве хладагента азота в твёрдом состоянии.
Читайте также:  Как и чем почистить сосуды кровеносные от бляшек

См. также[править | править код]

  • Термос
  • Криогеника
  • Криостат

Примечания[править | править код]

  1. ↑ Хранить тепло и холод: Термос, Популярная механика – 2005, № 3.
  2. ↑ А. ВАСИЛЬЕВ, Университеты Польши, КВАНТ, 2005, № 4
  3. ↑ К. Мендельсон. На пути к абсолютному нулю. – Рипол Классик. – С. 52. – ISBN 9785458327268.
  4. ↑ Classic Kit: Dewar’s flask, Chemistry World, August 2008, Vol 5, No 8
  5. ↑ Annales de chimie et de physique

Источники[править | править код]

  • Burger, R., U.S. Patent 872 795, «Double walled vessel with a space for a vacuum between the walls», December 3, 1907.
  • Сивухин Д. В. Общий курс физики. – М.: Наука, 1975. – Т. II. Термодинамика и молекулярная физика. – 519 с.

Ссылки[править | править код]

  • Технические характеристики сосудов Дьюара для хранения азота
  • Техника безопасности при работе с жидким азотом и Сосудами Дьюара
  • Взрыв сосуда Дьюара при наливании жидкого азота (нарушение ТБ)

Источник

Особенности хранения и транспортировки, а также точной и качественной заправки специализированной техники жидким гелием

Сосуд Дьюара многие в шутку называют «Хранителем холода» или «Дедушкой термосов». То и другое – в точку! Созданный для хранения и транспортировки сжиженных газов без ущерба их стартовым характеристикам, этот «дедушка» претерпел значительные изменения на протяжении истории своего существования.

Сегодня дьюары с объемом 2-1000 л применяют не только в качестве емкостей для газов и жидкостей с определенными температурными характеристиками, но и как важнейшую составляющую часть разнообразной криогенной техники.

Специалисты компании «Медстрой» занимаются заправкой жидким гелием МРТ и другого оборудования, которое необходимо в разных сферах деятельности. Наша компания, официальный партнер ПАО «Газпром», производит жидкий гелий на собственных мощностях с 2015 года.

Благодаря богатому опыту, знаниям и навыкам мы обеспечиваем высокую точность и гарантируем качество заправки, соблюдение всех норм хранения и транспортировки криогенной жидкости.Используем в работе емкости разного объема, что позволяет клиентам ощутимо экономить при заправке оборудования. Знаем все о сосудах Дьюара и готовы давать подробные консультации.

Немного об истории создания «хранителя холода»

2-стенная вакуумная емкость была названа в честь своего изобретателя – физика и химика Джеймса Дьюара (James Dewar) из Шотландии. На его счету – огромное число исследований и открытий, среди которых – сосуд, изолирующий содержимое от окружающей среды и длительно сохраняющий его температуру.

В начале 90-х годов XIX века появилось оборудование, производившее жидкий кислород и жидкий озон в промышленных масштабах. Джеймс вел исследования магнетизма этих веществ.

Ему требовалась вакуумная емкость для хранения, что и навело его на мысль о создании будущего «термоса». В те времена изобретатель даже не мог предположить, что именно эта идея и ее реализация прославят его на весь мир!

Шотландец использовал двустенную вакуумную бутылку Вайнольда, своего немецкого коллеги-физика, но усовершенствовал ее, посеребрив стенки, создав вакуум. Это обеспечило более длительную и качественную теплоизоляцию.

Свою колбу с вакуумными стенками Джеймс впервые публично представил в 1893 году. Сосуд оказался невероятно эффективным. Даже самая первая модель уже позволила длительно сохранять жидкий кислород и озон без потери их свойств.

Увы, ученый оказался не слишком расторопным. Его емкость запатентовала немецкая компания «Термос» (Thermos GmbH). Она оперативно оформила документы и наладила в 1904 году производство первых коммерческих сосудов.

Джеймсу Дьюару пришлось довольствоваться лишь званием изобретателя уникального термоса.

Строение, сферы применения и особенности гелиевых сосудов Дьюара

Сосуд первоначально производился из стекла. Современные модели выполняются в основном из металла – сплава алюминия или нержавеющей стали.

  • Два резервуара, внешний и внутренний, соединяются тонкими, но очень прочными перемычками. Их выполняют из нержавеющей стали, но в новых моделях начали использовать высокопрочный пластик последних поколений.

  • Внешний сосуд покрывается абсорбентом, поглощающим остаточный газ в пространстве, и слоем теплоизоляции. Внутренний сосуд полируется до абсолютной гладкости.

  • Воздух из пространства между резервуарами откачивается до достижения вакуума (давление 10־² Па).

  • Емкость, изобретенная Джеймсом Дьюаром, имела узкое горлышко. Современные модели оснащаются специальной пробкой, которая позволила расширить горловину, и крышкой.

В отличие от термостатов или криостатов в дьюарах постоянная температура содержимого поддерживается пассивными методами, только благодаря хорошей теплоизоляции. Используют дьюары для хранения и транспортировки биоматериалов, жидкого азота, кислорода, гелия, а также для замораживания веществ или материалов.

Мы в работе применяем специальные гелиевые сосуды Дьюара.

Для снижения теплопотерь в них дополнительно в конструкции предусмотрены тепловые экраны, в основном из меди или других проводящих тепло металлов.

Экраны охлаждаются жидким азотом. У емкости соответственно больше слоев, две горловины – для закачки гелия и азота.

Дополнительно горловина оснащена штуцерами. Они предназначены для сброса газа, подключения оборудования для перекачки и других действий.

Гелиевый дьюар имеет также особенности хранения в наполненном состоянии: его недопустимо наклонять. Все тонкости и особенности учитывают специалисты при предоставлении криогенного сервиса:

Читайте также:  Сирень для лечения сосудов
в медицине и ветеринарии;

в косметологии и при лабораторных исследованиях;
в машиностроении и промышленности;в пищевой сфере и даже в сфере развлечений.

Не так давно рынке появилась новая разработка – гелиевый сосуд без азотной «рубашки». Производители в характеристиках заявляют, что теплопотери составляют не более 1% в сутки при объеме 100 л.

Стоимость услуг в компании «Медстрой» минимальна для того высокого уровня качества, которым отличаются результаты нашей работы. Считаем, что наши цены – одни из самых лучших в регионе. Мы изучаем рынок столицы и всегда ориентированы на наиболее лояльные для заказчиков условия.

При повторном обращении и больших объемах работ действует гибкая система скидок.

Продумываем специальные условия для компаний, которые обслуживаем на постоянной основе.

Даем полноценные бесплатные консультации, компетентно отвечаем на все вопросы, связанные с жидким и газообразным гелием.

Принимаем заявки в удобном для вас режиме – по телефону, е-мейл, прямо с сайта. Звоните или пишите нам, чтобы узнать все, что вас давно волновало и получить качественный и своевременный криогенный сервис.

Источник

Жидкий азот или другие криогенные жидкости для хранения биологических образцов или технологических процессов, таких как жидкостная хроматография, масс-спектрометрия (LCMS) и молекулярно-лучевая эпитаксия (MBE), поставляют сосудами Дьюара и Криоцилиндрами. В большинстве случаев это оптимальное решение для обеспечения небольших объемов потребления криогенных продуктов. Часто используют слово «dewar» дьюар для описания «криоцилиндра», и наоборот. Но это ошибка – есть несколько ключевых отличий.

Что такое Криоцилиндр?

Криоцилиндр – это герметичные сосуды, специально предназначенные для криогенных жидкостей. Чаще всего криоцилиндр является сосудом работающим под давлением, позволяющим выдавать жидкость и / или газ. Криоцилиндр имеет клапаны/вентили для наполнения и выдачи криогенной жидкости, а также предохранительный клапан с разрушаемым разрывным диском в качестве резервной защиты.

Что такое Дьюар?

Дьюары – это сосуды без давления, как термос. Как правило, они имеют свободную посадочную крышку или пробку, которая препятствует проникновению воздуха и влаги, но позволяет выпускать избыточное давление. Лабораторные дьюары имеют широкие отверстия и не имеют крышек или заглушек. Лаборатории в основном используют эти небольшие контейнеры для временного хранения.

сосуды дьюар TW

Конструкционные особенности

Дьюар состоит из двух сосудов, один из которых расположен внутри другого и соединены с горлышком. В зазоре между двумя сосудами создается частичный вакуум, который уменьшает теплопроводность или конвекцию. Сосуды Дьюара чаще всего изготавливаются из металла, боросиликатного стекла, пенопласта или пластика, и их отверстие закрывают пробкой или полиэтиленовым пластиком.

Криоцилиндр конструктивно намного сложнее: уровнемер жидкости (показывает сколько газа внутри), транспортировочное кольцо, стойка удержания транспортировочного кольца, защитный колпачок разрывной мембраны, внутренний сосуд, продукционный испаритель для подачи газа, внешний сосуд, резиновые компенсаторы удара, напольное опорное кольцо, сбросной вентиль, манометр давления, разрывная мембрана, вентиль наполнения/выдачи жидкости, редуктор подъема давления, продувочный вентиль, вентиль выдачи газа, регулятор экономайзер, вентиль редуктора подъема давления.

Остановимся на наиболее важных деталях.

Манометр

Манометр – тот элемент, на который стоит смотреть в первую очередь, т.к. он показывает давление газа внутри внутреннего сосуда. Поскольку криогенные жидкости на самом деле являются сжиженными газами, давление внутри резервуара будет постоянно увеличиваться, поскольку законы физики превращают холодную жидкость в более теплый газ. К счастью, это давление поможет вывести жидкость или газ из криоцилиндра. Но для большинства применений давление внутри резервуара должно поддерживаться искусственно. Цепь создания давления может автоматически это сделать. Открытие вентиля редуктора подъема давления, расположенного в верхней части резервуара, забирает жидкость через линию, проходящей по дну внутреннего резервуара, и пропускает ее через испаритель подъема давления, прикрепленный к внутренней стенке внешнего резервуара. Когда жидкость проходит через испаритель/теплообменник, она испаряется под действием тепла внешнего резервуара(тепла окружающего воздуха). Получающийся газ подается через вентиль повышения давления и регулятор повышения давления во внутренний резервуар, вызывая повышение давления.

Клапан использования газа и контур испарителя

Когда давление будет повышено, можно извлечь газ из криоцилиндра, открыв клапан подачи газа. Открытие этого клапана позволяет давлению в баке нагнетать жидкость вверх по линии подачи, а затем вниз в змеевик испарителя. Еще раз, тепло передается через внешние стенки резервуара в испаритель. Когда жидкость движется через змеевик, она испаряется теплом окружающей среды. Получающийся теплый газ течет через вентиль подачи газа к системе потребителя. Как правило, одноступенчатый регулятор подключается непосредственно к газовому клапану для снижения давления подачи в соответствии с требованиями вашего применения.

Читайте также:  Медитация для очищения сосудов

Схема экономайзера

Если вы не используете баллон в течение нескольких дней, давление будет продолжать расти со скоростью примерно на 2 бар в день, потому что небольшое количество тепла будет просачиваться во внутренний резервуар. Это тепло испаряет небольшое количество жидкости и вызывает медленное повышение давления. Давление можно нарастить до настройки вашего клапана регулирования давления. Затем клапан откроется и выпустит газ в атмосферу. Чтобы минимизировать потери от этого процесса испарения криогенной жидкости, цилиндры оснащают экономайзерами. Контур экономайзера вступает в действие, когда давление достигает значений выше установленных. В этот момент регулятор позволяет газу из верхней части резервуара течь через внутренний испаритель из газового клапана в основную систему потребителя. Это снижает давление во внутреннем резервуаре и сводит к минимуму потери от сброса газа в атмосферу. Когда давление нормализуется, регулятор экономайзера закрывается, и криоцилиндр затем подает газ, вытягивая жидкость через контур испарителя. Регулятор экономайзера должен иметь установленное давление на 1 бар выше, чем регулятор подъема давления.

Клапан управления давлением и разрывные диски

Клапан управления давлением установлен на том же штоке, что и манометр. Клапан регулирования давления, который часто устанавливается на давление 16 бар, работает вместе с разрывной мембраной во внутреннем баке. В качестве вспомогательного предохранительного устройства на внешней емкости также имеется разрывная мембрана для защиты пространства между внутренней и внешней емкостью от высокого давления.

Жидкостный клапан

Чтобы извлечь жидкость из вашего цилиндра, сначала закройте клапаны сброса давления и использования газа. Затем откройте клапан для использования жидкости, чтобы давление в верхней части резервуара заставляло жидкость подниматься в отводящую трубу и выходить из клапана для использования жидкости.

Отбор жидкости следует производить при низком давлении, чтобы предотвратить потери на испарение. Если во время перекачки давление в резервуаре превышает нормальное давление забора жидкости, откройте вентиляционный клапан, чтобы понизить давление. Перед отбором жидкости, давление в сосуде снижают. Обычно жидкость отводится при давлении 1 бар.

При заполнении открытого контейнера (дьюара), если требуется большее давление или скорость отбора жидкости, квалифицированный персонал может отрегулировать регулятор повышения давления.

Не снижайте остаток жидкости до ноля!

В центре резервуара находится датчик жидкого содержимого. Это может быть датчик поплавкового типа, который обеспечивает приблизительное указание содержимого резервуаров.

Если вы хотите более точные измерения, попробуйте датчик, который

использует перепад давления для определения уровня жидкости. Эти современные приборы имеют графические цифровые дисплеи для точных измерений. Плюс у них часто есть логический элемент, чтобы устранить потребность в таблицах пересчета.

Кроме того, многие из этих цифровых измерителей содержания жидкости имеют возможности телеметрии, чтобы упростить мониторинг уровней главных криоцилиндров.

Остерегайтесь мороза и воды

Поскольку испаритель повышения давления содержит криогенную жидкость, он охлаждает внешний резервуар, и вполне нормально, что на внешней стороне цилиндра образуется наледь. Во время длительного высокого потребления газа температура подачи газа значительно упадет, и внешняя поверхность криоцилиндра будет очень сильно обмерзать. Это обмерзание в конечном итоге превращается в воду, которая может повредить пол, а также просочиться в промежуточное пространство вашего объекта, чтобы нанести больший ущерб другим системам. Капельный лоток избавит вас от многих проблем. Поместите криоцилиндр и / или его испаритель на поддон или поднос, чтобы отводить воду, когда испарится наледь.

Стоит запомнить

  • Манометр показывает давление внутри внутреннего сосуда.
  • Открытие клапана повышения давления повышает давление в баке до нормального рабочего уровня.
  • Клапан отбора газа позволяет газу истекать из криоцилиндра.
  • Схема экономайзера сводит к минимуму потери продукта.
  • Чтобы извлечь жидкость, закройте клапаны для использования газа и давления и откройте клапан для использования жидкости.
  • Если вам необходимо точно знать, сколько жидкости находится в вашем цилиндре, используйте цифровой датчик.
  • Изморозь и наледь – ничего страшного. Но используйте поддон, чтобы избежать повреждения водой.

Получить консультацию по подбору оптимального криогенного сосуда для азота, аргона, гелия, покрывающие все ваши потребности можно по тел.: 8 (800) 600 81 29.

При подготовки статьи использованы материалы с ресурса www.westairgases.com

Источник