Критерии предельного состояния сосудов

Критерии предельного состояния сосудов thumbnail

Предельным состоянием объекта может считаться такое состояние, при котором его дальнейшая эксплуатация недопустима или нецелесообразна по техническим причинам, из-за нарушения требований безопасности (экологии) или по экономическим соображениям.

К примеру, предельным состоянием сосуда (аппарата), подвергающегося при эксплуатации коррозионно-эрозионному разрушению, является уменьшение толщины его стенок до предельной (расчетной) величины, ниже которой не обеспечивается необходимый запас его несущей способности.

Глубина отдельных локальных повреждений (исключая трещины) может значительно превышать среднюю глубину повреждений и не нарушать несущей способности аппарата. Допустимое количество (доля) повреждений на поверхности аппаратов и их размеры должны регламентироваться в зависимости от:

– характера нагрузки на элементы оборудования;

– свойств применяемых материалов.

Для элементов теплообменников критерии отбраковки следующие:

а) корпус, днище, фланцы и штуцера отбраковывают в следующих случаях.

– если под действием коррозии и эрозии толщина теплообменника достигнет расчетного значения

S = Sрасч.;

Sисп. = Sрасч. + С;

– при наличии дефектов сварных швов, обнаруженных неразрушающими методами, а также металлографическими исследованиями: трещин всех видов и направлений, расположенных в металле шва, по линии оплавления и в околошовной зоне основного металла, в том числе и микротрещин, выявленных при микроисследовании; межкристаллитной коррозии сварных швов и износа их толщины до отбраковочных размеров, коррозионного растрескивания;

– при появлении трещин, а также неравномерных коррозионных язв общей площадью Аобщ.язв более 10% от поверхности рассматриваемого элемента (корпуса, днища) Акорп. и глубиной DS, превышающей 50% от первоначальной толщины его стенки Sисп.;

– если элементы теплообменника не выдержали испытания на прочность и плотность.

б) трубные решетки отбраковывают при наличии трещин или коррозионного и эрозионного разрушения на глубину DSтр. более 10% от первоначальной толщины Sисп.тр.

Элементы металлоконструкций отбраковывают при износе толщины их стенки на 30% от проектной.

Для трубопроводов определены следующие количественные критерии:

– износ толщины стенки не более 20%;

– величина остаточной деформации труб из углеродистых сталей не более 2,5%.

Из рассмотренных критериев видно, что критерии предельного состояния могут быть:

– качественными (наличие трещин, свищей, вмятин, коррозионного растрескивания);

– количественными (величина износа, коррозии, деформации и др.).

При отсутствии в технической документации КПС ориентировочными их значениями могут быть нормы технологических допусков на изготовление, которые могут уточняться в зависимости от конструктивного исполнения, материала и условий эксплуатации.

Методы оценки величины повреждений

Результаты всех выполненных исследований (расчетов), сделанных на основе разработанной методики, оформляются в виде заключения об остаточном ресурсе с приложениями.

Остаточный ресурс является прогнозируемой величиной. Прогноз осуществляется на основе анализа:

– основных тенденций в изменении технического состояния оборудования

– скорости изменения соответствующих параметров технического состояния.

Данная методика основана на индивидуальной диагностике обследуемого оборудования и включает следующие этапы работ:

1) оценки технического состояния объекта эксплуатации. Оценка технического состояния оборудования является первым этапом и одним из важнейших элементов определения его остаточного ресурса. Достоверность оценки технического состояния определяет надежность прогноза остаточного ресурса. Этим положением обусловлена необходимость использования при оценке технического состояния максимально возможной информации об исследуемом объекте.

Основной исходной информацией для оценки технического состояния являются:

– статистическая информация;

– техническая документация;

– внешний и внутренний осмотры оборудования;

– толщинометрия. Замер толщины производится для всех несущих элементов (корпус, днище, люки, штуцера и др.), на которых выявлены видимые следы коррозии;

– дефектоскопия.

Максимальная достоверность исходной информации и надежность средств контроля предполагает использование современных эффективных методов и средств неразрушающего контроля структурной целостности объекта и физико-механических характеристик материала.

Результаты обследования служат основанием для принятия решения о необходимости вырезки металла для проведения исследования физико-механических свойств.

2) исследование физико-механических свойств металла. Для проведения исследования металла оборудования с целью оценки изменения его физико-механических свойств под влиянием условий длительной эксплуатации делаются контрольные вырезки. Из металла контрольной вырезки изготавливаются образцы для проведения следующих исследований:

– металлографических и замера твердости;

– испытаний на растяжение при нормальной и повышенной температуре;

– испытания на ударный изгиб при нормальной и пониженной температуре;

– оценки химического состава материала.

Необходимость каждого испытания определяется специалистами.

3) оценка фактической нагруженности элементов объекта. Оценка фактической нагруженности элементов оборудования выполняется расчетным, экспериментальным или комплексным методами. Расчеты по действующим нормативно-техническим документам выполняются:

– с учетом фактической геометрии конструкции;

– с учетом фактических толщин несущих элементов;

– с учетом имеющихся и выявленных концентраторов напряжений.

Для натурной оценки нагрузок, действующих на основные элементы оборудования, установления фактических напряжений, возникающих в элементах конструкции, используется натурное тензометрирование, которое рекомендуется выполнять при испытаниях оборудования и в условиях эксплуатации.

4) оценка работоспособности. Оборудование считается работоспособным, если его основные силовые элементы имеют запасы прочности не ниже установленных нормативными документами: nт = 1,5 – запас по пределу текучести; nв = 2,4 – запас по пределу прочности; nд = 1,5 – по пределу длительной прочности; nп = 1,0 – по пределу ползучести; nσ = 2,0 – по амплитудным напряжениям.

Величина запаса определяется фактическими физико-механическими свойствами металла конструкции и ее фактической нагруженностью.

Если эти условия не выполняются, а также для оборудования, имеющего дефекты формы (вмятины, выпучины, гофры) и трещины, работоспособность оборудования определяется после проведения специальных исследований или расчетов.

5) оценка ресурса оборудования. Прогнозирование ресурса оборудования основывается на результатах обследования его технического состояния. Схема оценки ресурса определяется типом основного повреждающего фактора, действующего на оборудование в процессе эксплуатации. Прогнозирование ресурса производится для оборудования, техническое состояние которого по результатам обследования и исследования физико-механических свойств металла оценивается как удовлетворительное. За ресурс оборудования принимается минимальное из полученных значений расчетного ресурса по повреждающим факторам, действующим на оборудование.

В тех случаях, когда расчетный ресурс оборудования превышает 10 лет, его принимают равным 10 годам. По выработке установленного ресурса, для оценки возможности дальнейшей эксплуатации оборудования, необходимо выполнение нового исследования.

Лекция 13. Определение остаточного ресурса оборудования при малоцикловых нагрузках

Общие положения

Малоцикловое нагружение (малоцикловая усталость) – повторно-статические нагружение, характеризуется малым числом циклов до разрушения и сравнительно большим уровнем прикладываемых напряжений.

Расчету подлежат аппараты стальные в химической, нефтеперерабатывающей и смежных отраслях промышленности.

Расчетные формулы применимы при условии:

1) расчетная температура стенки из углеродистой стали не превышает 380°С;

2) расчетная температура стенки из низколегированной стали не превышает 420°С;

3) из аустенитной стали – 525°С.

Главные циклы нагружения возникают от давления, стесненности температурных деформаций или других видов нагружения.

Предельное состояние определяют главные циклы (предельное число) за весь срок эксплуатации сосуда.

[N] = Nпред. = (103 ¸ 5 ∙ 105) циклов.

Цикл нагружения – изменение нагрузки, которая заканчивается первоначальным состоянием и затем повторяется. Размах колебаний нагрузки – абсолютное значение разности между максимальным и минимальным ее значениями в течение одного цикла.

Необходимо учитывать следующие циклы:

1) между пуском и остановкой;

2) при испытаниях давлением;

3) вызванные стесненностью температурных деформаций;

4) от дополнительных усилий F и моментов М (от крепления аппаратов и трубопроводов).

При расчете на малоцикловую усталость не учитывают циклы нагружения от:

а) ветровых и сейсмических нагрузок;

б) нагрузок, возникающих при транспортировании и монтаже;

в) нагрузок, у которых размах колебания не превышает:

– 15% от допускаемого значения, установленного при расчете на статическую прочность, для углеродистых и низколегированных сталей;

– 25% от допускаемого значения, установленного при расчете на статическую прочность, для аустенитных сталей;

г) температурных нагрузок, при которых размах колебания разности температур в двух соседних точках менее:

– 15°С для углеродистых и низколегированных сталей;

– 20°С для аустенитных сталей.

Под соседними точками следует понимать две точки стенки сосуда, расстояние между которыми l не превышает:

, (13.1)

где D – диаметр сосуда;

S – толщина стенки сосуда.

Расчет на малоцикловую усталость можно производить:

– для отдельных узлов при соответствующих значениях ξ, η, [σ] и [Р];

-для аппарата в целом при наибольших значениях ξ, η, [σ] и наименьшем [Р].

Методика определения остаточного ресурса при малоцикловых нагрузках

Этап 1. Циклы нагружения давлением

Должно выполняться условие:

Np ≤ [Np] (13.2)

где Np – действительное число циклов нагружения давлением – наработка за время эксплуатации определяется из журнала наблюдений за оборудованием за весь период от ввода оборудования в эксплуатацию до настоящего времени;

[Np] – допускаемое число циклов нагружения давлением [Np] определяется по ГОСТ в зависимости от комплексов {ξ, η, [σ]} и {ΔР/[Р]} (см. приложение П.4-6).

Этап 1.1 Определение допускаемого числа циклов нагружения давлением [Np]

Рассмотрим, как определяются величины, входящие в эти комплексы.

Комплекс {ξ, η, [σ]}

Коэффициент ξ зависит от типа сварного шва или соединения элементов и определяется по ГОСТ 25859- (см. приложение П.4).

Коэффициент η зависит от типа расчетного элемента, играющего самостоятельную роль или входящего в какой-либо узел (например: оболочка, днище, обечайка с кольцом жесткости и др.), определяется по ГОСТ 25859-83 (см. приложение П.5).

Допускаемое напряжение [σ] материала элемента сосуда при расчетной температуре, МПа, принимается по ГОСТ 14249-89 (см. приложение П.1).

Комплекс {ΔР/[Р]}

Размах колебания рабочего давления ΔР, МПа, определяется как разница между давлением в сосуде в состоянии эксплуатации Р (или испытания Р при учете циклов при испытаниях давлением) и атмосферным Ратм. При этом:

– если абсолютное давление больше атмосферного Ратм=0,1 МПа, то:

ΔР = Р, . (13.3 а)

– если абсолютное давление меньше атмосферного Ратм, то:

ΔР = Ратм – Рост = Рнар. (13.3 б)

Допускаемое внутреннее избыточное или допускаемое наружное давление [Р], МПа, определяется в зависимости от вида элемента (обечайка, днище, крышка и др.) и давления (внутреннее или наружное) по ГОСТ 14249-89 следующим образом.

Рекомендуемые страницы:

Читайте также:

Критерии предельного состояния сосудов

Читайте также:  Новообразований кожи и сосудов

Источник

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ПРОВЕДЕНИЮ ДИАГНОСТИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ОПРЕДЕЛЕНИЮ ОСТАТОЧНОГО СРОКА СЛУЖБЫ СОСУДОВ И АППАРАТОВ

В настоящих Методических указаниях изложены технические требования и рекомендации по проведению диагностирования технического состояния и определению остаточного срока службы сосудов и аппаратов, эксплуатируемых в химической, нефтехимической, нефтеперерабатывающей и других отраслях промышленности.

При разработке настоящих Методических указаний учтены опыт и практические результаты диагностирования технического состояния сосудов и аппаратов, использована современная методология оценки и прогнозирования технического состояния, изложен порядок проведения и оформления результатов диагностирования технического состояния сосудов и аппаратов.

В развитие основных требований настоящих Методических указаний могут выпускаться нормативные технические документы с учетом конструктивных особенностей и условий эксплуатации оборудования.

В разработке Методических указаний приняли участие представители Госгортехнадзора России и специализированных организаций: А.А.Шаталов, В.А.Баранов, Г.М.Селезнев, Н.А.Хапонен, С.А.Жулина, Н.М.Самсонов, В.В.Раков, В.И.Рачков, П.А.Харин, С.М.Кутепов, В.С.Шубин, В.И.Муштаев, А.М.Кузнецов, В.И.Лившиц, В.Г.Татаринов, А.П.Корчагин, С.П.Быков, В.И.Олеринский, А.В.Шишкин, И.В.Петрушин, Е.Н.Гальперин, Р.Г.Маннапов, В.М.Горицкий.

ВВЕДЕНИЕ

Настоящие Методические указания распространяются на отечественные и зарубежные стальные сосуды и аппараты химической, нефтехимической, нефтеперерабатывающей и других отраслей промышленности. Методические указания могут быть распространены на сосуды других отраслей при условии, что на них распространяются требования Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115-96), Правил проектирования, изготовления и приемки сосудов и аппаратов стальных сварных (ПБ 03-384-00), ОСТ 24.201.03-90 “Сосуды и аппараты стальные высокого давления. Общие технические требования”.

_______________

Действуют Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 03-576-03) и Правила проектирования, изготовления и приемки сосудов и аппаратов стальных сварных (ПБ 03-584-03). Подробнее, а также о действии других документов см. примечания издателя в разделе 10. (Примеч. изд.)

Настоящие Методические указания содержат основные требования и рекомендации к проведению диагностирования технического состояния* и определению остаточного ресурса эксплуатации сосудов.

Читайте также:  Лимон и чеснок для сосудов ног

_______________

* Далее – техническое диагностирование.

Термины и их определения, примененные в настоящих Методических указаниях, приведены в приложении А.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Техническое диагностирование сосудов и аппаратов в целях определения возможности их дальнейшей эксплуатации и остаточного ресурса проводится в следующих случаях:

после ремонтно-восстановительных работ с применением сварки;

при выявлении случаев нарушения установленного регламента эксплуатации (повышения рабочего давления, расширения диапазона рабочих температур, увеличения цикличности нагружения и др.);

по истечении установленного в паспорте сосуда срока эксплуатации (исчерпании установленного ресурса);

при отсутствии в паспорте сосуда расчетного срока службы после эксплуатации в течении 20 лет, если нет других решений о расчетном сроке службы, согласованных с Госгортехнадзором России;

при отсутствии в паспорте сосуда, работающего при переменном режиме нагружения, допускаемого числа циклов нагружения;

при утрате паспорта сосуда;

наступления сроков, установленных по результатам предыдущих технических диагностирований.

________________

Указами Президента Российской Федерации от 09.03.04 N 314 и от 20.05.04 N 649 функции Федерального горного и промышленного надзора России (Госгортехнадзора России) переданы Федеральной службе по экологическому, технологическому и атомному надзору (Ростехнадзору). (Примеч. изд.)

1.2. Работы по техническому диагностированию сосудов носят комплексный характер и в общем случае включают:

а) анализ технической документации;

б) наружный и внутренний осмотр, визуально-измерительный контроль сосуда;

в) контроль соответствия системы автоматизации требованиям Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115-96);

г) неразрушающий контроль качества сварных соединений, толщинометрию;

д) определение химического состава, металлографические исследования, оценку механических свойств основного металла и сварных соединений;

е) проведение коррозионных исследований;

ж) анализ результатов технического диагностирования и проведение расчетов на прочность;

з) анализ повреждений и параметров технического состояния сосуда и установление критериев предельного состояния;

и) проведение уточненных расчетов на прочность;

к) определение остаточного ресурса сосуда;

л) гидравлические (пневматические) испытания.

Работы по подп.”а”, “б”, “в”, “г”, “ж”, “к”, “л” носят обязательный характер.

Работы по подп.”д”, “е”, “з”, “и” могут проводиться дополнительно к основным работам при технической необходимости.

1.3. Объем работ по техническому диагностированию сосуда определяется по каждому конкретному объекту с учетом особенностей конструкции, сроков и условий эксплуатации.

1.4. Работы по техническому диагностированию сосуда должны выполняться по программе, разрабатываемой в соответствии с требованиями настоящих Методических указаний.

1.5. При оценке ресурса группы сосудов, однотипных по конструктивному и материальному исполнению и работающих в одинаковых условиях, производится полный комплекс работ по настоящим Методическим указаниям для отдельных представителей группы сосудов и в зависимости от полученных результатов может быть снижен объем контрольных работ на других сосудах данной группы.

1.6. Техническое диагностирование сосудов выполняется специализированной организацией силами специалистов, аттестованных в установленном порядке.

1.7. На основании результатов технического диагностирования специализированная организация выдает Заключение о возможности и условиях дальнейшей безопасной эксплуатации сосуда (далее – Заключение), оформленное в установленном порядке.

Читайте также:  Отечность всего тела сосуды

________________

Согласно Порядку продления срока безопасной эксплуатации технических устройств, оборудования и сооружений на опасных производственных объектах, утвержденному приказом Минприроды России от 30.06.09 N 195, техническое диагностирование технических устройств, оборудования и сооружений на опасных производственных объектах выполняется экспертной организацией с привлечением необходимых организаций. По окончании работ по определению возможности продления срока безопасной эксплуатации экспертная, организация составляет заключение экспертизы промышленной безопасности, в котором содержится вывод о возможности продления срока безопасной эксплуатации технического устройства, оборудования и сооружения. (Примеч. изд.)

1.8. В случае если в Заключении возможность дальнейшей эксплуатации сосуда допускается только при условии его ремонта, все ремонтные работы, включая разработку технологии ремонта, должны проводиться согласно требованиям Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115-96) [1], и Положения о порядке безопасного проведения ремонтных работ на химических, нефтехимических и нефтеперерабатывающих опасных производственных объектах (РД 09-250-98) [62].

1.9. К выполнению сварочных работ на сосудах должны допускаться специалисты, аттестованные в установленном порядке.

1.10. Все участки основного металла или сварных соединений, подвергавшиеся ремонту с применением сварки, следует проконтролировать двумя или более неразрушающими методами, один из которых предназначен для обнаружения поверхностных дефектов, а второй – для выявления внутренних дефектов; в необходимых случаях следует провести толщинометрию с оформлением соответствующих заключений о результатах контроля (приложение Б).

2. ПОДГОТОВКА СОСУДОВ И АППАРАТОВ К ТЕХНИЧЕСКОМУ ДИАГНОСТИРОВАНИЮ

2.1. Перед диагностированием сосудов и аппаратов следует прекратить их эксплуатацию, освободить внутреннее пространство от заполняющей среды, отключить заглушками от всех трубопроводов, соединяющих диагностируемые сосуды с источниками давления и другими сосудами и оборудованием.

Применяемые для отключения сосудов заглушки, устанавливаемые между фланцами, должны быть соответствующей прочности и иметь выступающую часть (хвостовик), по которой определяется наличие поставленной заглушки. Устанавливаемые между фланцами прокладки должны быть без хвостовиков.

2.2. При необходимости, если внутреннее пространство сосуда было загрязнено какими-либо вредными веществами, оно должно быть очищено и нейтрализовано в соответствии с инструкцией по безопасному ведению работ на предприятии – владельце сосуда.

2.3. Внутренняя и наружная поверхности сосуда очищаются от продуктов коррозии и оставшейся грязи с использованием металлической щетки и ветоши, смоченной растворителем, а контролируемые сварные соединения с внутренней или наружной стороны зачищаются до металлического блеска механическим методом (шлифмашинкой, абразивом и т.п.) до Rz40-Rz20 на ширину 50-100 мм (в зависимости от толщины стенки сосуда) по обе стороны от оси шва. При зачистке ось вращения инструмента должна быть параллельна оси контролируемых сварных швов.

2.4. Футеровка, изоляция и другие виды покрытий должны быть частично или полностью удалены, если имеются признаки, указывающие на возможность возникновения дефектов материала силовых элементов конструкции сосуда (неплотность футеровки, отдулины, следы промокания изоляции и т.п.).

2.5. Подготовленные к техническому диагностированию поверхности необходимо высушить сжатым воздухом.

2.6. Необходимо оснастить сосуд достаточным освещением от источника тока напряжением не более 12 В, а для сосудов, работающих со взрывоопасными средами и (или) во взрывоопасных зонах, – освещением светильниками во взрывозащищенном исполнении с соответствующей степенью или уровнем защиты.

2.7. Должны быть оборудованы безопасные подходы к сосуду и в случае необходимости установлены леса, лестницы, переходные мостики и ограждения для осмотра верхней части сосуда и проведения технического диагностирования.

2.8. Работы по подготовке сосуда к техническому диагностированию выполняются организацией – владельцем сосуда.

2.9. Работы по подготовке сосуда завершаются оформлением акта о готовности сосуда и передачей акта специализированной организации, выполняющей техническое диагностирование.

3. ПОРЯДОК ПРОВЕДЕНИЯ ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ

3.1. Анализ технической документации

3.1.1. Анализ технической документации на сосуд проводится в целях:

проверки наличия паспорта сосуда и правильности его заполнения;

установления фактических условий эксплуатации сосуда и соответствия их паспортным данным;

анализа результатов предшествовавших диагностированию технических освидетельствований, ранее проведенных диагностирований и ремонтно-восстановительных работ;

уточнения фактической наработки сосуда в часах или циклах нагружения (для сосудов периодического действия).

3.1.2. Анализу в общем случае подвергается следующая техническая документация:

паспорт сосуда, работающего под давлением;

эксплуатационные документы;

предписания территориального органа Госгортехнадзора России;

заключения по результатам предыдущих технических освидетельствований и технических диагностирований.

При анализе технической документации проверяются:

наличие в паспорте сосуда записи о его регистрации;

соответствие заводской маркировки сосуда на корпусе и на фирменной табличке паспортным данным;

использование сосуда по прямому назначению.

По результатам анализа технической документации уточняется программа технического диагностирования.

3.1.3. Особое внимание уделяется анализу сведений о повреждениях и неисправностях в работе сосуда и о причинах, приведших к ним.

3.2. Оперативная (функциональная) диагностика

3.2.1. Рабочая (проектная) документация на систему автоматизации сосудов должна соответствовать требованиям разд.5 Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115-96).

Источник