Кровеносные сосуды 100 мкм

Сосуды
Непременное условие существования организма – циркуляция жидкостей по кровеносным сосудам, переносящим кровь, и лимфатическим сосудам, по которым движется лимфа
Осуществляет транспорт жидкостей и растворенных в них веществ (питательные, продукты жизнедеятельности клеток, гормоны, кислород и др.) сердечно-сосудистая система – важнейшая интегрирующая система организма. Сердце в этой системе выполняет роль насоса, а сосуды служат своеобразным трубопроводом, по которому все необходимое доставляется каждой клетке тела.
Кровеносные сосуды
Рис. 1. Кровеносные сосуды (схема): венула (синий цвет), капиллярная сеть, вена (синий цвет), артерия (красный цвет), артериола (красный цвет)
Среди кровеносных сосудов выделяют более крупные – артерии и более мелкие – артериолы, по которым кровь течет от сердца к органам, венулы и вены, по которым кровь возвращается к сердцу, и капилляры, по которым кровь переходит из артериальных сосудов в венозные (рис. 1). Наиболее важные обменные процессы между кровью и органами совершаются в капиллярах, где кровь отдает содержащиеся в ней кислород и питательные вещества окружающим тканям, а забирает из них продукты метаболизма. Благодаря постоянной циркуляции крови поддерживается оптимальная концентрация веществ в тканях, что необходимо для нормальной жизнедеятельности организма.
Кровеносные сосуды образуют большой и малый круги кровообращения, которые начинаются и заканчиваются в сердце. Объем крови у человека массой тела 70 кг равен 5-5,5 л (примерно 7% массы тела). Состоит кровь из жидкой части – плазмы и клеток – эритроцитов, лейкоцитов и тромбоцитов. Вследствие высокой скорости кругооборота ежесуточно по кровеносным сосудам протекает 8000-9000 л крови.
В разных сосудах кровь движется с разной скоростью. В аорте, выходящей из левого желудочка сердца, скорость крови наибольшая – 0,5 м/с, в капиллярах – наименьшая – около 0,5 мм/с, а в венах – 0,25 м/с. Различия в скорости течения крови обусловлены неодинаковой шириной общего сечения кровеносного русла в разных участках. Суммарный просвет капилляров в 600-800 раз превышает просвет аорты, а ширина просвета венозных сосудов примерно в 2 раза больше, чем артериальных. По законам физики, в системе сообщающихся сосудов скорость тока жидкости выше в более узких местах.
Рис. 2. Строение стенки кровеносных сосудов: артерия, капилляр, вена
Стенка артерий толще, чем у вен, и состоит из трех оболочек слоев (рис. 2). Средняя оболочка построена из пучков гладкой мышечной ткани, между которыми расположены эластические волокна. Во внутренней оболочке, выстланной со стороны просвета сосуда эндотелием, и на границе между средней и наружной оболочками имеются эластические мембраны. Эластические мембраны и волокна образуют своеобразный каркас сосуда, придающий его стенкам прочность и упругость.
В стенке ближайших к сердцу крупных артерий (аорта и ее ветви) эластических элементов относительно больше. Обусловлено это необходимостью противодействовать растяжению массой крови, которая выбрасывается из сердца при его сокращении. По мере удаления от сердца артерии делятся на ветви и становятся мельче. В средних и мелких артериях, в которых инерция сердечного толчка ослабевает и требуется собственное сокращение сосудистой стенки для дальнейшего продвижения крови, хорошо развита мышечная ткань. Под влиянием нервных раздражений такие артерии способны изменять свой просвет.
Стенки вен тоньше, но состоят из тех же трех оболочек. Поскольку в них значительно меньше эластической и мышечной ткани, стенки вен могут спадаться. Особенностью вен является наличие во многих из них клапанов, препятствующих обратному току крови. Клапаны вен представляют собой карманоподобные выросты внутренней оболочки.
Лимфатические сосуды
Сравнительно тонкую стенку имеют и лимфатические сосуды. В них также имеется множество клапанов, которые позволяют лимфе двигаться только в одном направлении – к сердцу.
Лимфатические сосуды и оттекающая по ним лимфа также относятся к сердечно-сосудистой системе. Лимфатические сосуды вместе с венами обеспечивают всасывание из тканей воды с растворенными в ней веществами: крупные белковые молекулы, капельки жира, продукты распада клеток, чужеродные бактерии и прочие. Самые мелкие лимфатические сосуды – лимфатические капилляры – замкнуты на одном конце и располагаются в органах рядом с кровеносными капиллярами. Проницаемость стенки лимфатических капилляров выше, чем у кровеносных капилляров, а диаметр их больше, поэтому те вещества, которые из-за крупных размеров не могут попасть из тканей в кровеносные капилляры, поступают в лимфатические капилляры. Лимфа по своему составу напоминает плазму крови; из клеток в ней содержатся только лейкоциты (лимфоциты).
Образующаяся в тканях лимфа по лимфатическим капиллярам, а дальше по более крупным лимфатическим сосудам постоянно оттекает в кровеносную систему, в вены большого круга кровообращения. За сутки в кровь поступает 1200-1500 мл лимфы. Важно, что прежде чем оттекающая от органов лимфа попадет в кровеносную систему и смешается с кровью, она проходит через каскад лимфатических узлов, которые располагаются по ходу лимфатических сосудов. В лимфатических узлах чужеродные для организма вещества и болезнетворные микроорганизмы задерживаются и обезвреживаются, а лимфа обогащается лимфоцитами.
Расположение сосудов
Рис. 3. Венозная система
Рис. 3а. Артериальная система
Распределение сосудов в теле человека подчиняется определенным закономерностям. Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами. В составе этих сосудистых пучков проходят также лимфатические сосуды. Ход сосудов соответствует общему плану строения тела человека (рис. 3 и 3а). Вдоль позвоночного столба проходят аорта и крупные вены, в межреберных промежутках расположены отходящие от них ветви. На конечностях, в тех отделах, где скелет состоит из одной кости (плечо, бедро), имеется по одной главной артерии, сопровождаемой венами. Там, где в скелете две кости (предплечье, голень), идут и две главные артерии, а при лучевом строении скелета (кисть, стопа), артерии расположены соответственно каждому пальцевому лучу. Сосуды направляются к органам по кратчайшему расстоянию. Сосудистые пучки проходят в укрытых местах, в каналах, образованных костями и мышцами, и только на сгибательных поверхностях тела.
В некоторых местах артерии располагаются поверхностно, и их пульсация может быть прощупана (рис. 4). Так, пульс можно исследовать на лучевой артерии в нижней части предплечья или на сонной артерии в боковой области шеи. Кроме того, поверхностно расположенные артерии можно прижать к рядом лежащей кости для остановки кровотечения.
Рис. 4. Точки определения пульса
Как разветвления артерий, так и притоки вен широко соединяются между собой, образуя так называемые анастомозы. При нарушениях притока крови или ее оттока по основным сосудам анастомозы способствуют движению крови в различных направлениях и перемещению ее из одной области в другую, что приводит к восстановлению кровоснабжения. Это особенно важно в случае резкого нарушения проходимости основного сосуда при атеросклерозе, травме, ранении.
Самые многочисленные и тонкие сосуды – кровеносные капилляры. Диаметр их составляет 7-8 мкм, а толщина стенки, образованной одним слоем эндотелиальных клеток, лежащих на базальной мембране, – около 1 мкм. Через стенку капилляров осуществляется обмен веществ между кровью и тканями. Кровеносные капилляры находятся почти во всех органах и тканях (их нет только в самом наружном слое кожи – эпидермисе, роговице и хрусталике глаза, в волосах, ногтях, эмали зубов). Длина всех капилляров человеческого тела составляет примерно 100 000 км. Если их вытянуть в одну линию, то можно опоясать земной шар по экватору 2,5 раза. Внутри органа кровеносные капилляры соединяются между собой, образуя капиллярные сети. Кровь в капиллярные сети органов поступает по артериолам, а оттекает по венулам.
Микроциркуляция
Движение крови по капиллярам, артериолам и венулам, а лимфы по лимфатическим капиллярам получило название микроциркуляции, а сами мельчайшие сосуды (диаметр их, как правило, не превышает 100 мкм) – микроциркуляторного русла. Строение последнего русла имеет свои особенности в разных органах, а тонкие механизмы микроциркуляции позволяют регулировать деятельность органа и приспосабливать ее к конкретным условиям функционирования организма. В каждый момент работает, то есть открыта и пропускает кровь, только часть капилляров, другие же остаются в резерве (закрыты). Так, в покое могут быть закрытыми более 75% капилляров скелетных мышц. При физической нагрузке большинство из них открываются, так как работающая мышца требует интенсивного притока питательных веществ и кислорода.
Функцию распределения крови в микроциркуляторном русле выполняют артериолы, которые имеют хорошо развитую мышечную оболочку. Это позволяет им сужаться или расширяться, изменяя количество поступающей в капиллярные сети крови. Такая особенность артериол позволила русскому физиологу И.М. Сеченову назвать их «кранами кровеносной системы».
Изучение микроциркуляторного русла возможно лишь с помощью микроскопа. Именно поэтому активное исследование микроциркуляции и зависимости ее интенсивности от состояния и потребностей окружающих тканей стало возможным только в ХХ в. Исследователь капилляров Август Крог в 1920 г. был удостоен Нобелевской премии. В России существенный вклад в развитие представлений о микроциркуляции в 70-90-х годах внесли научные школы академиков В.В. Куприянова и А.М. Чернуха. В настоящее время, благодаря современным техническим достижениям, методы исследования микроциркуляции (в том числе с использованием компьютерных и лазерных технологий) широко применяются в клинической практике и экспериментальной работе.
Артериальное давление
Важной характеристикой деятельности сердечно-сосудистой системы служит величина артериального давления (АД). В связи с ритмической работой сердца оно колеблется, повышаясь во время систолы (сокращения) желудочков сердца и снижаясь во время диастолы (расслабления). Наивысшее АД, отмечаемое во время систолы, называют максимальным, или систолическим. Наименьшее АД называют минимальным, или диастолическим. АД обычно измеряют в плечевой артерии. У взрослых здоровых людей максимальное АД в норме равно 110-120 мм рт.ст., а минимальное 70-80 мм рт.ст. У детей, вследствие большой эластичности стенки артерий, АД ниже, чем у взрослых. С возрастом, когда эластичность сосудистых стенок из-за склеротических изменений уменьшается, уровень АД повышается. При мышечной работе систолическое АД растет, а диастолическое не меняется или снижается. Последнее объясняется расширением сосудов в работающих мышцах. Уменьшение максимального АД ниже 100 мм рт.ст. называют гипотонией, а увеличение выше 130 мм рт.ст. – гипертонией.
Уровень АД поддерживается сложным механизмом, в котором участвуют нервная система и различные вещества, переносимые самой кровью. Так, существуют сосудосуживающие и сосудорасширяющие нервы, центры которых расположены в продолговатом и спинном мозге. Имеется значительное количество химических веществ, под влиянием которых изменяется просвет сосудов. Часть этих веществ образуется в самом организме (гормоны, медиаторы, углекислый газ), другие поступают из внешней среды (лекарственные и пищевые вещества). Во время эмоционального напряжения (гнев, страх, боль, радость) в кровь из надпочечников поступает гормон адреналин. Он усиливает деятельность сердца и суживает сосуды, АД при этом повышается. Так же действует гормон щитовидной железы тироксин.
Каждому человеку следует знать, что его организм имеет мощные механизмы саморегуляции, при помощи которых поддерживается нормальное состояние сосудов и уровень АД. Это обеспечивает необходимое кровоснабжение всех тканей и органов. Однако надо обращать внимание на сбои в деятельности этих механизмов и с помощью специалистов выявлять и устранять их причину.
Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН
В материале использованы фотографии, принадлежащие shutterstock.com
Источник
Благодаря сети мельчайших кровеносных сосудов каждая клетка организма получает необходимые ей кислород и питательные вещества.
Капилляры – мельчайшие кровеносные сосуды, пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.
Артериолы и венулы
Капилляры – самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7-8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, – это артериолы, а выносящие кровь мелкие вены – венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию – удерживают имеющуюся в органе кровь.
Шунты
Есть сосуды, напрямую связывающие артериолы и венулы, – артериоловенулярные анастомозы (шунты). По ним кровь сбрасывается из артериального русла в венозное, минуя капиллярные сети. Значение артериоловенулярных анастомозов возрастает в неработающем, отдыхающем органе, когда нет необходимости в усиленном обмене веществ и большая часть поступившей крови без захода в капиллярные сети направляется дальше.
Микроциркуляция
Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды – микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения – в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000-9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).
Строение капилляра
Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное – из тканей в кровь – поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра – не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.
История изучения капиллярной сети
Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.
Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.
Особенности строения микроциркуляторного русла
Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах – диаметр их составляет 4,5-6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки – 7-11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20-30 мкм.
Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки – около 2500-3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах – около 1400, а в коже всего 40 капилляров.
В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15-17 годам).
Функциональные характеристики капиллярной сети
Общая емкость капиллярного русла составляет 25-30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20-35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При физических нагрузках в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах – необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.
Особенности кровотока в капиллярах
Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80-130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.
При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25-50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.
Регулирование микроциркуляции крови
Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10-100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови – кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей – крупные артериолы и венулы.
Диагностика расстройств микроциркуляции крови
Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.
Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств – стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями – выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.
Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.
Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН
Источник