Кровеносные сосуды скорость кровотока

Кровеносные сосуды скорость кровотока thumbnail

article1162.jpg

Кровь циркулирует по сосудам с определенной скоростью. От последней зависит не только артериальное давление и метаболические процессы, но и насыщение органов кислородом и необходимыми веществами.

Скорость кровотока (СК) – важный диагностический показатель. С его помощью определяется состояние всей сосудистой сети или отдельных ее участков. По ней же выявляются патологии различных органов.

скорость кровотока

Отклонение показателей скорости течения крови в сосудистой системе свидетельствует о спазмировании в ее отдельных участках, вероятности налипания холестериновых бляшек, образовании тромбов или повышении вязкости крови.

Закономерности явления

Скорость движения крови по сосудам зависит от количества времени, необходимого для ее прохождения по первому и второму кругу.

круги кровообращения

Измерение проводится несколькими способами. Один из наиболее распространенных – использование красителя флуоресцеина. Метод заключается во введении вещества в вену левой руки и определении временного промежутка, через который оно обнаруживается в правой.

Средний статистический показатель – 25-30 секунд.

Движение кровотока по сосудистому руслу изучает гемодинамика. В ходе исследований выявлено, что данный процесс является непрерывным в организме человека вследствие разницы давления в сосудах. Прослеживается течение жидкости от участка, где оно высокое, к участку с более низким. Соответственно, имеются места, отличающиеся наименьшей и наибольшей скоростью течения.

Определение значения производится при выявлении двух параметров, описанных ниже.

формула расчёта кровотока

Объемная скорость

Важным показателем гемодинамических значений является определение объемной скорости кровотока (ОСК). Это количественный показатель жидкости, циркулирующей за определенный временной отрезок сквозь поперечное сечение вен, артерий, капилляров.

ОСК напрямую связана с имеющимся в сосудах давлением и сопротивлением, оказываемым их стенками. Минутный объем движения жидкости по кровеносной системе вычисляется по формуле, учитывающей эти два показателя.

Замкнутость русла дает возможность сделать вывод о том, что через все сосуды, включая крупные артерии и мельчайшие капилляры, в течение минуты протекает одинаковое по объему количество жидкости. Непрерывность этого потока также подтверждает данный факт.

Однако это не свидетельствует об одинаковом объеме крови во всех ответвлениях кровеносного русла на протяжении минуты. Количество зависит от диаметра определенного участка сосудов, что никак не влияет на снабжение кровью органов, так как общее количество жидкости остается одинаковым.

Методы измерения

Определение объемной скорости не так давно еще проводилось так называемыми кровяными часами Людвига.

Более эффективный метод – применение реовазографии. В основу способа положено отслеживание электрических импульсов, связанных с сопротивлением сосудов, проявляющемся в качестве реакции на воздействие тока с высокой частотностью.

реовазография

При этом отмечается следующая закономерность: увеличение кровенаполнения в определенном сосуде сопровождается снижением его сопротивляемости, при уменьшении давления сопротивление, соответственно, увеличивается.

Эти исследования обладают высокой диагностической ценностью для выявления заболеваний, связанных с сосудами. Для этого выполняется реовазография верхних и нижних конечностей, грудной клетки и таких органов, как почки и печень.

Другой достаточно точный метод – плетизмография. Он представляет собой отслеживание изменений в объеме определенного органа, появляющихся в результате наполнения его кровью. Для регистрации этих колебаний используются разновидности плетизмографов – электрические, воздушные, водные.

Флоуметрия

Этот метод исследования движения кровотока основан на использовании физических принципов. Флоуметр прикладывается к обследуемому участку артерии, что позволяет осуществлять контроль над скоростью кровотока при помощи электромагнитной индукции. Специальный датчик фиксирует показания.

Индикаторный метод

Использование этого способа измерения СК предусматривает введение в исследуемую артерию или орган вещества (индикатора), не вступающего во взаимодействие с кровью и тканями.

укол в вену

Затем через одинаковые временные отрезки (на протяжении 60 секунд) в венозной крови определяется концентрация введенного вещества.

Эти значения используются для построения кривой линии и расчета объема циркулирующей крови.

Данный метод широко применяется с целью выявления патологических состояний сердечной мышцы, мозга и других органов.

Линейная скорость

Показатель позволяет узнать скорость течения жидкости по определенной длине сосудов. Иными словами, это отрезок, который преодолевают компоненты крови в течение минуты.

Линейная скорость изменяется в зависимости от места продвижения элементов крови — в центре кровяного русла или непосредственно у сосудистых стенок. В первом случае она максимальная, во втором – минимальная. Это происходит в результате трения, действующего на компоненты крови внутри сети сосудов.

Скорость на разных участках

Продвижение жидкости по кровеносному руслу напрямую зависит от объема исследуемой части. Так, например:

  1. Самая высокая скорость крови наблюдается в аорте. Это объясняется тем, что тут самая узкая часть сосудистого русла. Линейная скорость крови в аорте — 0.5 м/сек.
  2. Скорость движения по артериям составляет около 0.3 м/секунду. При этом отмечаются практически одинаковые показатели (от 0.3 до 0.4 м/сек) как в сонных, так и в позвоночных артериях.
  3. В капиллярах кровь движется с наименьшей скоростью. Это происходит вследствие того, что суммарный объем капиллярного участка во много раз превышает просвет аорты. Уменьшение доходит до 0.5 м/сек.
  4. Кровь течет по венам со скоростью 0.1- 0.2 м/сек.

фото 6

Диагностическая информативность отклонений от указанных значений заключается в возможности выявить проблемную зону в венах. Это позволяет своевременно устранить или предотвратить развивающийся в сосуде патологический процесс.

Читайте также:  Народные рецепты при лечении сосудов

Определение линейной скорости

фото 7

Использование ультразвука (эффект Доплера) позволяет с точностью определить СК в венах и артериях.

Сущность метода определения скорости данного типа в следующем: на проблемный участок прикрепляют специальный датчик, узнать нужный показатель позволяет изменение частотности звуковых колебаний, отражающих процесс течения жидкости.

Высокая скорость отражает низкую частоту звуковых волн.

В капиллярах скорость определяется с использованием микроскопа. Наблюдение ведется за продвижением по кровяному руслу одного из эритроцитов.

Другие методы

Разнообразие методик позволяет выбрать такую процедуру, которая помогает быстро и точно исследовать проблемный участок.

Индикаторный

При определении линейной скорости также используется индикаторный способ. Применяются меченные радиоактивными изотопами эритроциты.

эритроциты

Процедура предусматривает введение в вену, расположенную в локте, индикаторного вещества и прослеживание его появления в крови аналогичного сосуда, но в другой руке.

Формула Торричелли

Еще одним методом является применение формулы Торричелли. Здесь учитывается свойство пропускной способности сосудов. Есть закономерность: циркуляция жидкости выше в том участке, где имеется наименьшее сечение сосуда. Такой участок — аорта.

Самый широкий суммарный просвет в капиллярах. Исходя из этого, максимальная скорость в аорте (500 мм/сек), минимальная – в капиллярах (0.5 мм/сек).

Использование кислорода

При измерении скорости в легочных сосудах прибегают к особому методу, позволяющему определить ее при помощи кислорода.

Пациенту предлагают сделать глубокий вдох и задержать дыхание. Время появления воздуха в капиллярах уха позволяет с помощью оксиметра определить диагностический показатель.

Средняя для взрослых и детей линейная скорость: прохождение крови по всей системе за 21-22 секунды. Данная норма характерна для спокойного состояния человека. Деятельность, сопровождаемая тяжелой физической нагрузкой, сокращает этот временной промежуток до 10 секунд.

Кровообращение в организме человека — это движение главной биологической жидкости по сосудистой системе. О важности данного процесса говорить не приходится. От состояния кровеносной системы зависит жизнедеятельность всех органов и систем.

Определение скорости кровотока позволяет своевременно выявить патологические процессы и устранить их с помощью адекватного курса терапии.

Мы настоятельно рекомендуем не заниматься самолечением, лучше обратитесь к своему лечащему доктору. Все материалы на сайте носят ознакомительный характер!

Источник

Оглавление темы “Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.”:

1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.

2. Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).

3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?

4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.

6. Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

7. Сердечный выброс. Минутный объем кровообращения. Сердечный индекс. Систолический объем крови. Резервный объем крови.

8. Частота сердечных сокращений ( пульс ). Работа сердца.

9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.

10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.

Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

Давление и скорость кровотока в системе кровообращения уменьшаются от аорты до венул (см. табл. 9.2), а кровеносные сосуды становятся все более мелкими и многочисленными. В капиллярах скорость кровотока замедляется наиболее выраженно, что благоприятствует отдаче кровью веществ тканям. Для венозного отдела характерны низкий уровень давления и более медленная по сравнению с артериальным руслом скорость кровотока.

Таблица 9.2. Гидродинамические характеристики сосудистого русла большого круга кровообращения
Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

Сопоставление величин давления, кровотока и сопротивления сосудов в различных отделах сосудистого русла (табл. 9.2) свидетельствует о том, что внутрисосудистое давление от аорты до полых вен резко снижается, а объем крови в венозном русле, наоборот, возрастает. Следовательно, артериальное русло характеризуется высоким давлением и сравнительно небольшим объемом крови, а венозное — большим объемом крови и низким давлением.

Считается, что в венозном русле содержится 75—80 % крови, а в артериальном — 15—17 % и в капиллярах — около 5 % (в диапазоне 3—10 %).

Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).
Рис. 9.1. Сердечно-сосудистая система (функциональная схема).

Цифры в скобках — величина кровотока в покое (в % к минутному объему), цифры внизу рисунка — содержание крови (в % к общему объему).

Артериальная часть сердечно-сосудистой системы (светлая часть схемы) содержит всего 15—20 % общего объема крови и характеризуется высоким (относительно остальных отделов системы) давлением. В центре схемы находится область транскапиллярного обмена, т. е. капиллярных (обменных) сосудов, для обеспечения оптимальной функции которых служит, в основном, сердечно-сосудистая система. При этом в виде точек обозначено большое число капилляров в организме и огромная площадь их возможной поверхности во время функционирования органа или ткани, хотя цифры внизу указывают на сравнительно небольшой объем содержащейся в них крови в условиях покоя. Наибольшее количество крови содержится в области большого объема, которая обозначена штриховкой. Эта область содержит в 3—4 раза больше крови, чем область высокого давления, в связи с чем и площадь, обозначенная на схеме штриховкой, больше площади светлой части схемы.

Исходя из этого в функциональной схеме сердечно-сосудистой системы (рис. 9.1) выделены 3 области: высокого давления, транскапиллярного обмена и большого объема.

При функциональном единстве, согласованности и взаимообусловленности подразделов сердечно-сосудистой системы и характеризующих их параметров в ней условно выделяют три уровня:

а) системная гемодинамика — обеспечивающая процессы циркуляции крови (кругооборота) в системе;

б) органное кровообращение — кровоснабжение органов и тканей в зависимости от их функциональной потребности;

в) микрогемодинамика (микроциркуляция) — обеспечение транскапиллярного обмена, т. е. нутритивной (питательной) функции сосудов.

– Также рекомендуем “Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.”

Источник

Скорость кровотока — интенсивность движения крови в различных отделах системы кровообращения. Она может быть выражена двумя показателями: в виде так наз. объемного расхода (объемная С. к.), т. е. количества крови, протекающей через поперечное сечение сосуда за единицу времени, в л/мин или мл/сек, и массового расхода (массовая С. к.), т. е. массы (веса) той же крови в кг/мин или г/сек. Между объемной Скоростью кровотока (Q) и массовой (Qm) существует соотношение: Qm = pQ, в к-ром р — плотность крови. Кроме того, существует понятие «линейная Скорость кровотока», отражающее быстроту движения конкретных частиц крови, в т.ч. форменных ее элементов и переносимых ею веществ; она характеризует перемещение частицы потока за единицу времени в м/сек, измеренное в конкретной точке. Линейная С. к. не одинакова по всему сечению сосуда — у стенки она равна нулю, в центре максимальна, т. к. кровоток осуществляется гл. обр. за счет перемещения масс крови, расположенных около оси сосуда. Распределение линейных С. к. по сечению сосуда называют профилем скоростей. Он зависит от характера течения крови по сосуду — является ли оно ламинарным, когда отдельные слои крови не перемешиваются (см. Гидродинамика), что свойственно большинству сосудов, или турбулентным, при к-ром слои крови хаотически перемешиваются, что наблюдается в крупных сосудах и сосудах с сильно нарушенной гладкостью русла, а также при малой вязкости крови (см. Вязкость). В первом случае имеет место так наз. параболический профиль скоростей (рис. 1, а), во втором случае он приближается к плоскопараллельному (рис. 1, б). Поэтому значение линейной С. к. в какой-либо одной точке сечения сосуда не может отражать интенсивность кровотока. Такой характеристикой может служить средняя по сечению сосуда С. к. (Wcp) или скорость идеального плоскопараллельного потока, по производительности равнозначного реальному течению, как ламинарному, так и турбулентному. Последняя выражается формулой:

Wср = Q/S, где S — площадь внутреннего сечения сосуда.

Рис. 1. Схематическое изображение сечения кровеносных сосудов с различными профилями скоростей кровотока: о — параболический профиль скоростей кровотока в ламинарном потоке; б — плоскопараллельный профиль скорости кровотока в турбулентном потоке; стрелками указано направление кровотока, длина стрелки указывает величину скоростей кровотока в данном участке сосудистого русла.

Движение крови на любом участке сосуда осуществляется под действием разности давлений на концах этого участка. С. к. зависит поэтому от величины действующих в сосуде давлений. Для ламинарного течения связь объемной С. к. и действующих давлений описывается формулой Пуазейля (см. Гемодинамика): объемная С. к. пропорциональна действующей на поток разности давлений. Эта зависимость отражает характер движения крови в периферических сосудах. Для турбулентного течения та же связь описывается формулой Торричелли: объемная С. к. пропорциональна квадратному корню из разности давлений. Это характерно для течения крови в сердце, центральных сосудах и для случаев, когда число Рейнольдса (отношение произведения плотности жидкости, скорости ее течения и диаметра сосуда, по к-рому она течет, к вязкости жидкости) превосходит критическое значение — 2300.

Рис. 2. Диаграмма, отражающая объемную скорость кровотока в различных органах и тканях в покое (высота закрашенной части столбика) и при максимальном расширении сосудов (высота всего столбика) у человека весом около 70 кг: 1 — слюнные железы; 2 — почки; 3 — миокард; 4 — желудочно-кишечный тракт; 5 — кожа; 6 — печень (печеночная артерия); 7 — центральная нервная система; 8 — скелетные мышцы; 9 — подкожная клетчатка.

Рис. 2. Диаграмма, отражающая объемную скорость кровотока в различных органах и тканях в покое (высота закрашенной части столбика) и при максимальном расширении сосудов (высота всего столбика) у человека весом около 70 кг: 1 — слюнные железы; 2 — почки; 3 — миокард; 4 — желудочно-кишечный тракт; 5 — кожа; 6 — печень (печеночная артерия); 7 — центральная нервная система; 8 — скелетные мышцы; 9 — подкожная клетчатка.

Рис. 3. График, отражающий суммарную площадь поперечного сечения кровеносных сосудов (пунктирная линия), среднюю линейную скорость кровотока (обозначено точками) и величину кровяного давления (сплошная линия) в разных отделах сосудистой системы в покое.

Рис. 3. График, отражающий суммарную площадь поперечного сечения кровеносных сосудов (пунктирная линия), среднюю линейную скорость кровотока (обозначено точками) и величину кровяного давления (сплошная линия) в разных отделах сосудистой системы в покое.

Объемная, массовая и линейная С. к. различны по интенсивности в разных сосудах, что связано с ветвлением сосудистой системы, ее структурой и основным назначением в той или иной области. В обменных сосудах С. к. определяется необходимостью обеспечить эффективный транскапиллярный обмен между кровью и тканевой жидкостью при очень малой протяженности этих сосудов (0,6—1,0 мм), в транспортных сосудах — доставить кровь на периферию и вновь возвратить ее к сердцу с минимальными энергетическими затратами, избежав агрегации форменных элементов. Наибольшая С. к. в устьях примыкающих к сердцу артерий (аорты и легочной артерии), она отражает суммарное потребление крови организмом и известна как секундный или минутный объем сердца, измеряемый соответственно в л/сек и л/мин (см. Кровообращение, физиология). Интенсивность кровотока в различных органах и тканях организма в покое и при максимальном их кровоснабжении различна (рис. 2). Большое различие наблюдается и в линейной С. к. в различных отделах сосудистой системы (рис. 3).

Рассмотренные характеристики отражают кровоток как процесс стационарный с равномерным движением крови. Реальное течение крови по системе кровообращения отличается, однако, неравномерностью и имеет выраженный динамический характер. Больше неравномерность выражена в сердце и в примыкающих к нему сосудах (движение в них происходит прерывисто, с остановками). В сосудах, удаленных от сердца, кровь движется непрерывно, но с пульсациями, уменьшающимися в направлении к периферии. В капиллярах и периферических венах течение крови близко к равномерному. Равномерность движения крови по обменным сосудам — капиллярам (несмотря на дискретный характер насосной функции сердца) имеет важное биологическое значение как условие непрерывности и постоянства обмена. Для движения крови в транспортных сосудах — артериях и крупных венах — неравномерность кровотока не существенна.

Первичным звеном, где формируется динамика артериального кровотока, является восходящая часть аорты. Здесь кровоток в диастолу и в период изометрического сокращения левого желудочка отсутствует. При этом давление ввиду непрекращающегося питания мпкроциркуляторного бассейна непрерывно уменьшается. С началом фазы изгнания С. к. быстро нарастает, обусловливая резервирование крови в артериальной системе для последующего ее расхода в диастолу. В этот период, называемый периодом быстрого изгнания, на кривой давления формируется анакротический подъем. Максимум С. к. наступает через 0,05—0,08 сек. от начала изгнания и находится по времени близко к максимуму скорости нарастания давления. К моменту наступления максимума давления, соответствующего равновесию между притоком и оттоком крови, С. к. уже значительно снижена, а в остальную часть фазы изгнания, так наз. период редуцированного изгнания, она отстает от скорости оттока и к концу его падает до нуля. Ввиду кратковременности быстрого изгнания (0,09— 0,12 сек.) по сравнению с длительностью сердечного цикла средняя скорость кровотока в этот период в 7 — 10 раз превосходит секундный объем сердца, пиковая же скорость изгнания превосходит его в десятки раз. Начало диастолического периода на кривой С. к. обозначается отрицательным зубчиком, обусловленным небольшим обратным током крови в момент закрытия клапана аорты. Аналогичный характер имеет кровоток и в легочной артерии.

Изгнание крови ослабленным сердцем совершается менее энергично, пик скорости наступает позже, амплитуда снижается, особенно сильно при недостаточности желудочков.

Противоположные изменения наблюдаются у лиц с высоким функциональным резервом сердца. При недостаточности клапана аорты у них увеличена С. к. в фазу изгнания, но в остальную часть сердечного цикла, особенно в ранний диастолический период, на кривой С. к. регистрируется отрицательная волна, коррелирующая по амплитуде со степенью регургитации (см.).

Резко отличную форму имеют кривые Скорости кровотока в коронарных артериях, что обусловлено значительным или полным пережатием интрамуральных сосудов в систолу и их раскрытием при расслаблении миокарда. Особой конфигурацией отличаются также кривые С. к. в полых венах, отражающие динамическую структуру венозного возврата крови к сердцу. Наполнение правого предсердия осуществляется прерывисто в несколько фаз с тремя пиками, соответствующими фазам пресистолической, систолической и постсистолической аспирации крови.

Измерение Скорости кровотока производится разными методами. Ведущее значение в клин, практике имеет измерение минутного объема сердца (см. Кровообращение, Плетизмография, Реография). Широко распространена ультразвуковая допплер-тахография (см. Ультразвуковая диагностика). Метод позволяет зондировать с поверхности тела ультразвуковым лучом сосуды, расположенные в глубине организма. Точность метода зависит от точности ориентации датчика (см.). Та же задача в сосудистой хирургии успешно решается с использованием электромагнитных расходомеров, датчики к-рых накладываются на невскрытый, но обнаженный сосуд (см. Кровообращение,, методы и приборы для исследования).

В экспериментальных исследованиях сохранили свое значение средства измерения кровотока, требующие для присоединения прибора перерезки или пункции сосуда (капельный, пузырьковый, игольчатый пли щетинковый и другие флоуметры), отличающиеся высокой статической и динамической точностью, простотой и надежностью.

Библиография: Гайтон А. Физиология кровообращения, Минутный объем сердца и его регуляция, пер. с англ., М., 1969; Джонсон П. Периферическое кровообращение, пер. с англ., М., 1982; 3арецкий В. В. и др. Электромагнитная флоуметрия, М., 1974; Каро К. и др. Механика кровообращения, пер. с англ., М., 1981; Рашмеp Р. Динамика сердечно-сосудистой системы, пер. с англ., М., 1981; Савицкий H. Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики, Л., 1963; Современные методы исследования функций сердечно-сосудистой системы, под ред. Е. Б. Бабского и В. В. Ларина, М., 1963; Физиология кровообращения, Физиология сердца, под ред. Е. Б. Бабского и др., Л., 1980; Фолков Б. и Нил Э. Кровообращение, пер. с англ., М., 1976.

Источник

Читайте также:  Воспаление кровеносных сосудов причины