Кровеносные сосуды в почках

Кровеносные сосуды в почках thumbnail

Оглавление темы “Анатомия почки.”:

1. Почка, ren.

2. Топография почек. Оболочки почки. Фиксация почки.

3. Строение почек ( почки ). Кровоснабжение почек. Сосуды почек ( почки ).

4. Почечная лоханка. Почечные чашки.

5. Рентгеноанатомия почки.

6. Сегментарное строение почки. Сегменты почки.

На продольном разрезе, проведенном через почку, видно, что почка в целом слагается, во-первых, из полости, sinus renalis, в которой расположены почечные чашки и верхняя часть лоханки, и, во-вторых, из собственно почечного вещества, прилегающего к синусу со всех сторон, за исключением ворот. В почке различают корковое вещество, cortex renis, и мозговое вещество, medulla renis.

Корковое вещество занимает периферический слой органа, имеет толщину около 4 мм. Мозговое вещество слагается из образований конической формы, носящих название почечных пирамид, pyramides renales. Широкими основаниями пирамиды обращены к поверхности органа, а верхушками—в сторону синуса.

Верхушки соединяются по две или более в закругленные возвышения, носящие название сосочков, papillae renales; реже одной верхушке соответствует отдельный сосочек. Всего сосочков имеется в среднем около 12.

Каждый сосочек усеян маленькими отверстиями, foramina papillaria; через foramina papillaria моча выделяется в начальные части мочевых путей (чашки). Корковое вещество проникает между пирамидами, отделяя их друг от друга; эти части коркового вещества носят название columnae renales. Благодаря расположенным в них в прямом направлении мочевым канальцам и сосудам пирамиды имеют полосатый вид. Наличие пирамид отражает дольчатое строение почки, характерное для большинства животных.

У новорожденного сохраняются следы бывшего разделения даже на наружной поверхности, на которой заметны борозды (дольчатая почка плода и новорожденного). У взрослого почка становится гладкой снаружи, но внутри, хотя несколько пирамид сливаются в один сосочек (чем объясняется меньшее число сосочков, нежели число пирамид), остается разделенной на дольки — пирамиды.

Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)

Полоски медуллярного вещества продолжаются также и в корковое вещество, хотя они заметны здесь менее отчетливо; они составляют pars radiata коркового вещества, промежутки же между ними — pars convoluta (convolutum — сверток).

Pars radiata и pars convoluta объединяют под названием lobulus corticalis.

Почка представляет собой сложный экскреторный (выделительный) орган. Он содержит трубочки, которые называются почечными канальцами, tubuli renales. Слепые концы этих трубочек в виде двустенной капсулы охватывают клубочки кровеносных капилляров.

Каждый клубочек, glomerulus, лежит в глубокой чашеобразной капсуле, capsula glomeruli; промежуток между двумя листками капсулы составляет полость этой последней, являясь началом мочевого канальца. Glomerulus вместе с охватывающей его капсулой составляет почечное тельце, corpusculum renis.

Почечные тельца расположены в pars convoluta коркового вещества, где они могут быть видимы невооруженным глазом в виде красных точек. От почечного тельца отходит извитой каналец — tubulus renalis contdrtus, который находится уже в pars radiata коркового вещества. Затем каналец спускается в пирамиду, поворачивает там обратно, делая петлю нефрона, и возвращается в корковое вещество.

Конечная часть почечного канальца — вставочный отдел — впадает в собирательную трубочку, которая принимает несколько канальцев и идет по прямому направлению {tubulus renalis rectus) через pars radiata коркового вещества и через пирамиду. Прямые трубочки постепенно сливаются друг с другом и в виде 15 — 20 коротких протоков, ductus papillares, открываются foramina papillaria в области area cribrosa на вершине сосочка.

Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)

Почечное тельце и относящиеся к нему канальцы составляют структурно-функциональную единицу почки — нефрон, nephron. В нефроне образуется моча. Этот процесс совершается в два этапа: в почечном тельце из капиллярного клубочка в полость капсулы фильтруется жидкая часть крови, составляя первичную мочу, а в почечных канальцах происходит реабсорб-ция — всасывание большей части воды, глюкозы, аминокислот и некоторых солей, в результате чего образуется окончательная моча.

В каждой почке находится до миллиона нефронов, совокупность которых составляет главную массу почечного вещества. Для понимания строения почки и ее нефрона надо иметь в виду ее кровеносную систему. Почечная артерия берет начало от аорты и имеет весьма значительный калибр, что соответствует мочеотделительной функции органа, связанной с «фильтрацией» крови.

У ворот почки почечная артерия делится соответственно отделам почки на артерии для верхнего полюса, аа. polares superiores, для нижнего, аа. polares inferiores, и для центральной части почек, аа. centrales. В паренхиме почки эти артерии идут между пирамидами, т. е. между долями почки, и потому называются аа. interlobares renis. У основания пирамид на границе мозгового и коркового вещества они образуют дуги, аа. arcuatae, от которых отходят в толщу коркового вещества аа. interlobulares.

От каждой a. interlobularis отходит приносящий сосуд vas afferens, который распадается на клубок извитых капилляров, glomerulus, охваченный началом почечного канальца, капсулой клубочка. Выходящая из клубочка выносящая артерия, vas efferens, вторично распадается на капилляры, которые оплетают почечные канальцы и лишь затем переходят в вены. Последние сопровождают одноименные артерии и выходят из ворот почки одиночным стволом, v. renalis, впадающим в v. cava inferior.

Венозная кровь из коркового вещества оттекает сначала в звездчатые вены, venulae stellatae, затем в vv. interlobulares, сопровождающие одноименные артерии, и в vv. arcuatae. Из мозгового вещества выходят venulae rectae. Из крупных притоков v. renalis складывается ствол почечной вены. В области sinus renalis вены располагаются спереди от артерий.

Таким образом, в почке содержатся две системы капилляров; одна соединяет артерии с венами, другая — специального характера, в виде сосудистого клубочка, в котором кровь отделена от полости капсулы только двумя слоями плоских клеток: эндотелием капилляров и эпителием капсулы. Это создает благоприятные условия для выделения из крови воды и продуктов обмена.

Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Схема иннервации почки, мочеточника, надпочечника
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)
Анатомия: Строение почек (почки). Кровоснабжение почек. Сосуды почек (почки)

Учебное видео анатомии почки

Другие видео уроки по данной теме находятся: Здесь.

– Также рекомендуем “Почечная лоханка. Почечные чашки.”

Редактор: Искандер Милевски. Дата последнего обновления публикации: 31.8.2020

Источник

Кровеносное русло почки представлено артериальными и венозными сосудами и капиллярами, по которым в течение суток протекает от 1500 до 1800 л крови. Кровь в почку поступает по почечной артерии (ветвь брюшной части аорты), которая в воротах почки делится на переднюю и заднюю ветви. Встречаются добавочные артерии почки, которые вступают в ворота почки или проникают в почку через ее поверхность. В почечной пазухе передняя и задняя ветви почечной артерии проходят впереди и позади почечной лоханки и делятся на сегментарные артерии. Передняя ветвь отдает четыре сегментарные артерии: к верхнему, верхнему переднему, нижнему переднему и нижнему сегментам. Задняя ветвь почечной артерии продолжается в задний сегмент органа под названием задней сегментарной артерии. Сегментарные артерии почки ветвятся на междолевые артерии, которые идут между соседними почечными пирамидами в почечных столбах. На границе мозгового и коркового вещества междолевые артерии ветвятся и образуют дуговые артерии, располагающиеся над основаниями почечных пирамид, между корковым и мозговым веществом почки. От дуговых артерий в корковое вещество отходят многочисленные междольковые артерии, дающие начало приносящим клубочковым артериолам. Каждая приносящая клубочковая артериола (приносящий сосуд); (arteriola glomerularis afferens, s.vas afferens) распадается на капилляры, петли которых образуют клубочковую капиллярную сеть (rete capillare glomerulare), или клубочек (glomerulus). Из клубочка выходит выносящая клубочковая артериола, или выносящий сосуд (arteriola glomerularis efferens, s.vas efferens), диаметр ее меньше, чем диаметр приносящей клубочковой артериолы. Выйдя из клубочка, выносящая клубочковая артериола распадается на капилляры, которые оплетают почечные канальцы (нефронов), образуя капиллярную сеть коркового и мозгового вещества почки. Такое разветвление приносящего артериального сосуда на капилляры клубочка и образование из капилляров выносящего артериального сосуда получило название чудесной сети (rete mirabili). В мозговое вещество почки от дуговых и междолевых артерий и от некоторых выносящих клубочковых артериол отходят прямые артериолы, которые распадаются на капилляры, кровоснабжающие почечные пирамиды.

Читайте также:  Отсутствие сосудов в эндометрии

Выносящие артериолы в дальнейшем образуют перитубулярную юкстамедуллярную капиллярную сеть.

Перитубулярная капиллярная сеть. В средней и поверхностной зоне коркового вещества выносящие клубочковые артериолы образуют перитубулярные капилляры, которые, окутывая проксимальный и дистальный почечные канальцы, кровоснабжают их. Капилляры коркового вещества открываются в радиально расположенные междольковые вены, которые последовательно впадают в дуговые вены (vv. arcuatae), а те в свою очередь – в почечную и нижнюю полую вены.

Юкстамедуллярная капиллярная сеть. В юкстамедуллярной зоне каждая выносящая клубочковая артериола устремляется по направлению к мозговому веществу почки, где распадается на пучки прямых артериол (arteriolae rectae). Каждый пучок состоит примерно из 30 нисходящих сосудов, при этом те из них, которые находятся на периферии пучка, разветвляются на капиллярную сеть в наружной зоне мозгового вещества. Центральная часть пучка прямых артериол, состоящая из нисходящих и восходящих сосудов, проникает глубоко в зону мозгового вещества. Эти сосуды повторяют ход колен петли Генле. Ближе к почечному сосочку сосуды изменяют своё направление на противоположное. Они распадаются на несколько ветвей и в виде прямых венул (venulae rectae) пронизывают мозговое вещество почки. Венулы впадают в дуговые вены (vv. arcuatae), которые затем переходят в междолевые вены (vv. interlobares) и, впадая в почечную вену, через почечные ворота покидают почки.

Кровоснабжение почки значительное (величина почечного кровотока составляет 1000-1200 мл/мин – 20-25% от величины сердечного выброса) и превышает кровоснабжение всех других органов. Кровоснабжение почек происходит неравномерно: на долю коркового вещества приходится 80-85% общего почечного кровотока, а на долю мозгового вещества почки – менее 10%, тем не менее считают, что в количественном отношении медуллярный кровоток примерно в 15 раз выше кровотока покоящейся мышцы и равен кровотоку через головной мозг.

Из капиллярной сети коркового вещества почки формируются венулы; сливаясь, они образуют междольковые вены, впадающие в дуговые вены, расположенные на границе коркового и мозгового вещества. Сюда же впадают и венозные сосуды мозгового вещества почки. В самых поверхностных слоях коркового вещества почки и в фиброзной капсуле формируются так называемые звездчатые венулы, которые впадают в дуговые вены. Они, в свою очередь, переходят в междолевые вены, которые вступают в почечную пазуху, сливаются друг с другом в более крупные вены, формирующие почечную вену. Почечная вена выходит из ворот почки и впадает в нижнюю полую вену.

Лимфатические сосуды почки сопровождают кровеносные сосуды, вместе с ними выходят из почки через ее ворота и впадают в поясничные лимфатические узлы.

Нервы почки отходят от чревного сплетения, узлов симпатического ствола (симпатические волокна) и от блуждающих нервов (парасимпатические волокна). Вокруг почечных артерий образуется почечное сплетение, отдающее волокна в вещество почки. Афферентная иннервация осуществляется из нижнегрудных и верхнепоясничных спинномозговых узлов.

Источник

Развитие сосудов почек – васкулогенез

Одновременно с нефрогенезом происходит развитие кровеносной системы почек. Хотя традиционно считалось, что почечные сосуды образуются из уже существующих внепочечных в результате процесса, называемого ангиогенезом, недавние исследования показали, что они могут развиваться внутри самой почки в результате другого процесса, называемого васкулогенезом.

Показано, что важнейшую роль в развитии почечных сосудов играет фактор роста эндотелия с его рецепторами Kdr (Flk-1) и Flt-1 — они стимулируют дифференцировку эндотелиальных клеток, образование капилляров и поддержание пористой структуры эндотелия почечных сосудов.

Интересно, что рост сосудов почки, по-видимому, зависит от концентрации в тканях кислорода, регулирующей синтез фактора роста эндотелия. В условиях относительной гипоксии, наблюдающейся в эмбриональной почке, этот синтез увеличивается, что ведет к дифференцировке ангиобластов, их пролиферации и сборке в эндотелиальные трубки.

Эфрины — это гликопротеиды, которые либо связаны с клеточной мембраной через гликозилфосфатидилинозитол (эфрин А), либо пронизывают клеточную мембрану (эфрин В). Эфрины связываются с рецепторами с собственной тирозинкиназной активностью семейства Eph (erythropoietin-producing hepatocellular receptor — рецепторы эритропоэтинсекретирующих печеночных клеток), очень узкоспецифичных по своему распределению и функциям. Эфрины могут направлять миграцию эндотелиальных клеток после завершения их дифференцировки.

В развитии сосудов участвует также система ангиопоэтина, состоящая из ангиопоэтина-1 и ангиопоэтина-2. Ангиопоэтин-1 активирует рецептор с собственной тирозинкиназной активностью Tie2 (Тек), экспрессирующийся лишь в клетках эндотелия и клетках ранних стадий кроветворения. Ангиопоэтин-2 блокирует этот рецептор, являясь антагонистом ангиопоэтина-1.

Ангиопоэтин-2 может действовать и синергично с фактором роста эндотелия, облегчая отщепление новых отростков сосудов тем, что блокирует их стабилизацию и созревание под влиянием ангиопоэтина-1; в отсутствие же фактора роста эндотелия ангиопоэтин-2 может способствовать регрессии сосудов.

Семейство факторов транскрипции Ets регулирует каскад генов, влияющих на кроветворение (CSF1, SPI1), транскрипцию ренина, дифференцировку клеток эндотелия (VEGF, KDR, FLT1) и активность протеаз (ММР1, PLAU). У мышей с направленной делецией гена ETS1 описаны тяжелые нарушения клубочковых капилляров.

Тромбоцитарный фактор роста b, вероятно, участвует в дифференцировке клеток мезангия, поскольку у мышей с делецией гена PDGFB или PDGFRB мезангиальные клетки и капилляры клубочков не развиваются.

Хотя мы стали гораздо лучше понимать, как формируются клубочковые капилляры, процесс образования почечных артериол далеко не так ясен, а механизмы, участвующие в сборке артериол, неизвестны. Многочисленные исследования показали, что ренин-ангиотензиновая система участвует в ветвлении почечных артериол; появление ренинсекретирующих клеток в артериолах совпадает с началом их ветвления. Обнаружена роль ренин-ангиотензиновой системы в ветвлении артериол.

У крыс под действием ингибиторов ренин-ангиотензиновой системы ветвление артериол прекращается, они укорачиваются и утолщаются, гладкомышечные клетки располагаются в них концентрическими слоями; можно предположить, что отсутствие ангиотензина ведет к появлению незрелых гладкомышечных клеток, которые избыточно пролиферируют, располагаясь концентрически, словно утратили способность к правильной ориентации. Сходные аномалии сосудов наблюдались при направленной делеции генов АПФ, ангиотензиновых рецепторов и ангиотензиногена.

Стоит отметить, что отклонениям в сосудообразовании сопутствуют разнообразные гистологические нарушения, включая замедленное развитие клубочков, образование кист и общие нарушения структуры почки. Сходные изменения обнаруживают у новорожденных, чьи матери во время беременности получали ингибиторы АПФ.

Васкулогенез почек
Основные стадии образования кровеносной системы нефрона

А. Мочеточниковый вырост индуцирует мезенхиму, которая конденсируется вокруг кончиков его ветвей и постепенно дифференцируется в эпителий нефрона. Расположенные по соседству клетки мезенхимы на вид не отличаются друг от друга. Однако одни из них являются предшественниками клеток эндотелия, другие — мезангиальных или ренинсекретирующих клеток.

Б. Конденсированная мезенхима через стадии везикулы и клубочка в форме запятой (не показаны) достигла изображенной здесь стадии S-образного клубочка. В нижнюю щель клубочка проникают предшественницы клеток эндотелия, которые группируются, образуя эндотелиальный слой артериолы, и привлекают предшественниц гладкомышечных, мезангиальных и юк-стагломерулярных клеток (или индуцируют дифференцировку в них клеток мезенхимы). Эти клетки образуют оболочку артериол и мезангий клубочка.

В. У клубочка появились артериолы, содержащие гладкомышечные и ренинсекретирующие клетки. В раннем внутриутробном периоде артериолы богаты последними. Образовались также петли капилляров клубочка; в клубочек уже проникли клетки мезангия.

– Также рекомендуем “Кровоток в почках и скорость почечной фильтрации (СКФ)”

Оглавление темы “Физиология нефрона почек”:

  1. Нефрогенез – эмбрилогия развития почек
  2. Факторы влияющие на нефрогенез – развитие почки
  3. Развитие сосудов почек – васкулогенез
  4. Кровоток в почках и скорость почечной фильтрации (СКФ)
  5. Функции проксимального канальца нефрона почки
  6. Функции восходящей части петли Генле и дистального извитого канальца нефрона почки
  7. Функции собирательной трубочки нефрона почки
  8. Выведение кислот нефронами почек
  9. Выведение кальция нефронами почек
  10. Концентрирование и разведение мочи почками

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 декабря 2019; проверки требуют 7 правок.

У этого термина существуют и другие значения, см. Почка.

Строение почки:
1. Мозговое вещество и почечные пирамиды (Pyramides renales)
2. Выносящая клубочковая артериола (Arteriola glomerularis efferens)
3. Почечная артерия (Arteria renalis)
4. Почечная вена (Vena renalis)
5. Почечные ворота (Hilus renalis)
6. Почечная лоханка[en] (Pelvis renalis)
7. Мочеточник (Ureter)
8. Малая почечная чашка (Calices minores renales)
9. Фиброзная капсула почки (Capsula fibrosa renalis)
10. Нижний полюс почки (Extremitas inferior)
11. Верхний полюс почки (Extremitas (Arteriola glomerularis afferens)
12. Сеть почечных капилляров.
13. Нефрон (
Nephron)
14. Почечная пазуха (
Sinus renalis)
15. Большая почечная чашка (
Calices majores renales)
16. Вершина почечной пирамиды (
Papillae renales)
17. Почечный столб (
Columna renalis)

По́чка (лат. ren) — парный фасолевидный орган, очищающий кровь, выполняющий посредством функции мочеобразования регуляцию химического гомеостаза организма. Входит в систему органов мочевыделения (мочевыделительную систему)

Анатомия почек[править | править код]

У человека почки расположены за пристеночным листком брюшины в поясничной области по бокам от двух нижних грудных и двух верхних поясничных позвонков в проекции которых прилегают к задней брюшине, причём правая почка в норме расположена несколько ниже, поскольку сверху она граничит с печенью (у взрослого верхний полюс правой почки обычно достигает уровня 12-го межреберья, верхний полюс левой — уровня 11-го ребра). (У так называемых «зеркальных людей» несколько ниже расположена левая почка, так как у них печень расположена слева, и с печенью граничит, соответственно, левая почка.)

Размеры одной почки составляют примерно 11,5−12,5 см в длину, 5−6 см в ширину и 3−4 см в толщину[2]. Масса почек составляет 120−200 грамм, обычно левая почка несколько больше правой[3].

Каждая почка покрыта прочной соединительнотканной фиброзной капсулой, и состоит из паренхимы и системы накопления и выведения мочи. Капсула почки представляет собой плотный чехол из соединительной ткани, покрывающий почку снаружи. Паренхима почки представлена внешним слоем коркового вещества и внутренним слоем мозгового вещества, составляющим внутреннюю часть органа. Система накопления мочи представлена малыми почечными чашечками (6−12), которые, сливаясь между собой по 2—3, образуют большую почечную чашечку (2−4), которые, сливаясь, образуют почечную лоханку. Почечная лоханка[en] переходит непосредственно в мочеточник. Правый и левый мочеточники впадают в мочевой пузырь. В каждой почке у человека насчитывается около миллиона нефронов, которые являются структурными единицами, обеспечивающими работу почки. Кровоснабжение почек осуществляется почечными артериями, которые отходят непосредственно от аорты. Из чревного сплетения в почки проникают нервы, которые осуществляют нервную регуляцию функции почек, а также обеспечивают чувствительность почечной капсулы.
Морфо-функциональной единицей почки является нефрон — специфическая структура, выполняющая функцию мочеобразования. В каждой почке насчитывается более 1 миллиона нефронов. Каждый нефрон состоит из нескольких частей: клубочка, капсулы Шумлянского — Боумена и системы канальцев, переходящих один в другой. Клубочек представляет собой не что иное, как скопление капилляров, по которым протекает кровь. Петли капилляров, составляющих клубочек, погружены в полость капсулы Шумлянского — Боумена. Капсула имеет двойные стенки, между которыми имеется полость. Полость капсулы переходит непосредственно в полость канальцев.
Большая часть нефронов расположена в корковом веществе почки. Только 15 % от всех нефронов расположены на границе между корковым и мозговым веществом почки. Таким образом, корковое вещество почек состоит из нефронов, кровеносных сосудов и соединительной ткани. Канальцы нефронов образуют что-то наподобие петли, которая проникает из коркового вещества в мозговое. Также в мозговом веществе расположены выводящие канальцы, по которым моча, образовавшаяся в нефроне, выводится в почечные чашечки. Мозговое вещество образует так называемые «почечные пирамиды», вершины которых заканчиваются почечными сосочками, выступающими в полость малой почечной чашечки. На уровне сосочков происходит объединение всех почечных канальцев, по которым выводится моча

Внутреннее строение овечьей почки

У млекопитающих почки — это образования фасолевидной формы, снаружи покрытые плотной фиброзной капсулой. На поперечном срезе почки можно различить корковое и мозговое вещество. Корковое представлено главным образом почечными клубочками, а мозговое — канальцевыми частями нефронов. Мозговое вещество образует пирамиды, основанием обращенные к корковому слою. Пирамид может быть, как одна (у крыс), так и несколько (7−24 у человека). Между ними располагаются почечные столбы, которые представляют собой участки коркового вещества и содержат сегментарные кровеносные и лимфатические сосуды. Пирамида с прилегающим к её основанию корковым веществом образует почечную долю. В центре вогнутого края находятся ворота почки, здесь расположено расширенное устье мочеточника — почечная лоханка. В области ворот почки в неё входят кровеносные сосуды (почечные артерия и вена), лимфатические сосуды, нервы. Отходящие от почек мочеточники открываются в мочевой пузырь.

Функции почек[править | править код]

  • Экскреторная (то есть выделительная)
  • Осморегулирующая
  • Ионорегулирующая
  • Эндокринная (внутрисекреторная)
  • Метаболическая
  • Участие в кроветворении

Основная функция почек — выделительная — достигается процессами фильтрации и секреции. В почечном тельце из капиллярного клубочка под высоким давлением содержимое крови вместе с плазмой (кроме клеток крови и некоторых белков) процеживается в капсулу Шумлянского — Боумэна. Образовавшаяся жидкость — первичная моча продолжает свой путь по извитым канальцам нефрона, в которых происходит обратное всасывание питательных веществ (глюкозы и др.), воды, электролитов в кровь, при этом в первичной моче остаются мочевина, мочевая кислота и креатин. В результате этого образуется вторичная моча, которая из извитых канальцев идет в почечную лоханку, затем в мочеточник и мочевой пузырь. В норме за день через почки проходит 1700—2000 литров крови, образуется 120—150 литров первичной мочи и 1,5—2 литра вторичной мочи.

Скорость ультрафильтрации определяется несколькими факторами:

  • Разницей давлений в приносящей и отводящей артериоле почечного клубочка.
  • Разницей осмотического давления между кровью в капиллярной сети клубочка и просветом боуменовой капсулы.
  • Свойствами базальной мембраны почечного клубочка.

Вода и электролиты свободно проходят через базальную мембрану, а вещества с более высокой молекулярной массой фильтруются избирательно. Определяющим фактором для фильтрации средне- и высокомолекулярных веществ является размер пор и заряд базальной мембраны клубочка.

Почки играют существенную роль в системе поддержания кислотно-щелочного равновесия плазмы крови. Почки также обеспечивают постоянство концентрации осмотически активных веществ в крови при различном водном режиме для поддержания водно-солевого равновесия.

Через почки из организма выводятся конечные продукты азотистого обмена, чужеродные и токсические соединения (включая многие лекарства), избыток органических и неорганических веществ, они участвуют в обмене углеводов и белков, в образовании биологически активных веществ (в частности — ренина, играющего ключевую роль в регуляции системного артериального давления и скорость секреции альдостерона надпочечниками, эритропоэтина — регулирующего скорость образования эритроцитов).

Почки водных животных в значительной степени отличаются от почек наземных форм в связи с тем, что у водных стоит проблема выведения из организма воды, в то время как наземным необходимо удерживать воду в организме.

Заболевания почек[править | править код]

Болезни почек охватывают всё большее количество людей. Это связано с большим количеством врожденных патологий и неправильным образом жизни, а также большой неохотой посещать врачей при первых симптомах заболеваний.

К наиболее частым заболеваниям относятся:

  • Мочекаменная болезнь (нефролитиаз) — образование камней и песка в почках.
  • Пиелонефрит — считается одним из воспалительных заболеваний почек, зачастую инфекция попадает в почку через кровь.
  • Нефроптоз (блуждающая почка) — заболевание может быть как врождённым, так и приобретённым. Чаще болеют женщины.
  • Гидронефроз — характеризуется проблемами с оттоком мочи из почки.
  • Почечная недостаточность — состояние, когда почки частично перестают функционировать и выполнять свои функции, выделяют острую и хроническую формы.
  • Гломерулонефрит — ещё одно воспалительное заболевание, при котором поражаются почечные клубочки и канальцы.

Трансплантация почки[править | править код]

При уменьшении числа функционирующих нефронов развивается хроническая почечная недостаточность, при прогрессировании которой до терминальной почечной недостаточности необходимо лечение гемодиализом, перитонеальным диализом или выполнение трансплантации почки. Трансплантация почки является наиболее эффективным видом заместительной почечной терапии, в том числе и потому, что она замещает все функции почки, тогда как диализ отчасти компенсирует только выделительную функцию почек, а для замещения других функций почки необходимо применение лекарственных средств (эритропоэтина, метаболитов витамина D и т. д.).

В 2011 году по всему миру было пересажено 76 тысяч почек (всего пересажено 110 тыс. органов)[4].

См. также[править | править код]

  • Искусственная почка
  • Нефрон
  • Надпочечники

Примечания[править | править код]

Литература[править | править код]

  • Швецов, М. Ю. Это должен знать каждый! : Для чего нужны почки и как они работают? Как проверить состояние почек? Отчего возникают болезни почек? Как сохранить почки здоровыми? // Почки и здоровье : научно-популярное приложение к журналу «Нефрология». — 2011. — Т. 15, № 1. — С. 3–32. — ISSN 1561-6274. — doi:10.24884/1561-6274-2011-15-0-3-32.

Ссылки[править | править код]

  • Статьи по теме «Нефрология» // Omnibus rebus. — Борис Бикбов.
  • Российское диализное общество.
  • Почки человека // EtoPochki.ru.

Органы и ткани, образующиеся из зародышевых листков

Эктодерма
  • Эпидермис кожи
  • Ногти
  • Волосы
  • Потовые железы
  • Вся нервная система: головной мозг, спинной мозг, нервное окончание, нервы
  • Рецепторные клетки органов чувств
  • Хрусталик глаза
  • Зубная эмаль
Энтодерма
  • Эпителий желудка, пищевода, кишечника, трахеи, бронхов, лёгких, желчного пузыря, мочевого пузыря, мочеиспускательного канала
  • Печень
  • Поджелудочная железа
  • Щитовидная и паращитовидная железы
  • Хорда
Мезодерма
  • Гладкая мускулатура всех органов
  • Скелетная мускулатура
  • Сердечная мышца
  • Соединительная ткань
  • Кости
  • Хрящи
  • Дентин зубов
  • Кровь
  • Кровеносные сосуды
  • Брыжейка
  • Почки
  • Семенники и яичники

Источник

Читайте также:  Не исчезает сосуд на глазе