Ксилема состоит из сосудов

Ксилема. Строение ксилемы. Функции ксилемы.Ксилема выполняет в растении две основные функции: по ней движется вода вместе с растворенными минеральными веществами и она служит опорой органам растения. Таким образом, ксилема играет в растении двоякую роль — физиологическую и структурную. В состав ксилемы входят гистологические элементы четырех типов: трахеиды, сосуды, паренхимные клетки и волокна. На рис. 6.9 эти гистологические элементы представлены и поперечном и продольном разрезах. Трахеиды ксилемыТрахеиды — это одиночные лигнифицированные клетки веретеновидной формы. Концы соприкасающихся трахеид перекрываются так же, как и заостренные концы волокон склеренхимы. Это придает трахеидам механическую прочность и обеспечивает органам растения опору. Трахеиды — мертвые клетки; в зрелом состоянии их просвет ничем не заполнен. Среди водопроводя-ших клеток сосудистых растений трахеиды представляют первичную примитивную форму; у древних сосудистых растений это единственные водопроводящие клетки. Из них развились описанные ниже сосуды и волокна ксилемы высших растений. Несмотря на свой примитивный характер, трахеиды, несомненно, функционируют эффективно; об этом свидетельствует тот факт, что у голосеменных растений доставка воды от корней к надземным частям обеспечивается исключительно трахеидами, а ведь большинство голосеменных — древесные породы. Вода движется по пустым просветам трахеид, не встречая на своем пути помех в виде живого содержимого. Из одной трахеиды в другую она переходит либо через поры, через их «замыкающие пленки», либо через нелигнифицированные части клеточных стенок. Характер лигнификации (одревеснения) клеточных стенок трахеид близок к тому, который описан ниже для сосудов. На рисунке представлено строение трахеид. У покрытосеменных число трахеид по сравнению с числом сосудов относительно невелико. Сосуды считаются более эффективным приспособлением для транспорта воды, нежели трахеиды; появление сосудов связано, как полагают, с тем, что у покрытосеменных с их большой листовой поверхностью транспира-ция идет более активно. Сосуды ксилемыСосуды — характерные проводящие элементы ксилемы покрытосеменных. Они представляют собой очень длинные трубки, образовавшиеся в результате слияния ряда клеток, соединившихся «конец в конец». Каждая из клеток, образующих сосуд ксилемы, соответствует трахеиде и называется члеником сосуда. Однако членики сосуда короче и шире трахеид. Первая ксилема, появляющаяся в растении в процессе сто развития, носит название первичной ксилемы; она закладывается у кончика корня и на верхушке побегов. Дифференцированные членики сосудов ксилемы появляются рядами на концах прокамбиальных тяжей. Сосуд возникает, когда соседние членики в данном ряду сливаются в результате разрушения перегородок между ними. Внутри сосуда сохраняются в виде ободков остатки разрушенных торцевых стенок. Слияние члеников сосудов изображено на рисунке. Протоксилема и метаксилемаПервые по времени образования сосуды — протоксилема — закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки еше продолжают вытягиваться. Зрелые сосуды про-токсилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки еще не сплошь одревеснели —лигнин откладывается в них лишь кольцами или по спирали (рис. 6.12). Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня. С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают свое развитие в зрелых частях органа; так формируется ме-гаксшема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мертвые, жесткие? полностью одревесневшие трубки. Если бы их развитие завершалось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу. У сосудов метаксилемы обнаруживаются три главных типа утолщений: лестничные, сетчатые и точечные. Длинные полые трубки ксилемы — идеальная система для проведения воды на большие расстояния с минимальными помехами. Так же как и в трахеидах, вода может переходить из сосуда в сосуд через поры или через неодревеснев-шие части клеточной стенки. Вследствие одревеснения клеточные стенки сосудов обладают высокой прочностью на разрыв, что тоже очень важно, потому что благодаря этому трубки не спадаются, когда вода движется в них под натяжением (разд. 13.4). Вторую свою функцию — механическую — ксилема выполняет также благодаря тому, что она состоит из ряда одревесневших трубок. В первичном теле растения ксилема в корнях занимает центральное положение, помогая корню противостоять тянущему усилию надземных частей, изгибающихся под порывами ветра, В стебле проводящие пучки либо образуют по периферии кольцо, как у двудольных, либо располагаются беспорядочно, как у однодольных; в обоих случаях стебель пронизывается отдельными тяжами ксилемы, обеспечивающими ему определенную опору. Особенно важное значение опорная функция ксилемы приобретает там, где имеет место вторичный рост. Во время этого процесса быстро нарастает количество вторичной ксилемы; к ней переходит от колленхимы и склеренхимы роль главной механической ткани, и именно она служит опорой у крупных древесных и кустарниковых пород. Рост стволов в толщину определяется в известной мере нагрузками, которым подвергается растение, так что иногда наблюдается дополнительный рост, смысл которого состоит в усилении структуры и обеспечении ей максимальной опоры. Древесинная паренхима ксилемыДревесинная паренхима ксилемы содержится как в первичной, так и во вторичной ксилеме, однако в последней ее количество больше и роль важнее. Клетки древесинной паренхимы, подобно любым другим паренхимным клеткам, имеют тонкие целлюлозные стенки и живое содержимое. Во вторичной ксилеме имеются две системы паренхимы. Обе они возникают из меристемати-ческих клеток, называемых в одном случае лучевыми инициалями, а вдругом — веретеновидны-ми инициалями (гл. 22). Лучевая паренхима более обильна. Она образует радиальные слои ткани, так называемые сердцевинные лучи, которые, пронизывая сердцевину, служат живой связью между сердцевиной и корой. Здесь запасаются различные питательные вещества, скапливаются таннины, кристаллы и т. п., и здесь же осуществляется радиальный транспорт питательных веществ и воды, а также газообмен по межклетникам. Из веретеновидных инициалей обычно развиваются сосуды ксилемы и ситовидные трубки флоэмы вместе с их клетками-спутницами, однако время от времени они дают начало также и паренхимным клеткам. Эти паренхимные клетки образуют во вторичной ксилеме вертикальные ряды. Древесинные волокна ксилемыПолагают, что древесинные волокна, так же как и сосуды ксилемы, ведут свое происхождение от трахеид. Они короче и уже трахеид, а стенки их гораздо толще, но поры их сходны с порами, имеющимися в трахеидах, и на срезах волокна иногда трудно отличить от трахеид, поскольку между теми и другими есть ряд переходных форм. Древесинные волокна очень напоминают уже описанные волокна склеренхимы; их торцевые стенки также перекрываются. В отличие от сосудов ксилемы древесинные волокна не проводят воду; поэтому у них могут быть гораздо более толстые стенки и более узкие просветы, а значит, они отличаются и большей прочностью, т. е. придают ксилеме дополнительную механическую прочность. – Также рекомендуем “Флоэма. Строение флоэмы. Функции флоэмы.” Оглавление темы “Ткани. Питание клетки.”: |
Источник
Ксилема. Состав ксилемы. Состав и функции трахеальных элементов.
Ксиле́ма (от греч. ξύλον — древеси́на) — основная водопроводящая ткань наземных сосудистых растений; один из двух подтипов проводящей ткани растений, наряду с флоэмой — лубом.
Ксилема выполняет в растении две основные функции: по ней движется вода вместе с растворенными минеральными веществами и она служит опорой органам растения. Таким образом, ксилема играет в растении двоякую роль — физиологическую и структурную. В состав ксилемы входят гистологические элементы четырех типов: трахеиды, сосуды, паренхимные клетки и волокна.
Состав ксилемы.В состав ксилемы входят проводящие, механические, запасающие и некоторые другие элементы. Рассмотрим подробнее проводящие элементы как наиболее важные, определяющие характер всей ткани. Остальные элементы будут рассмотрены позднее.
Ксилема
Гистологический состав:
1) трахеальные элементы. Функция: проведения воды и растворенных в ней веществ;
2) паренхимные клетки. Функция: запасание и передвижение пластических веществ;
3) волокна. Функция: опорная, иногда функция запасания.
Трахеальные элементы
Трахеальные элементы – это трахеиды и членики сосудов.
Первичная ксилема содержит клетки тех же типов, что и вторичная ксилема: оба вида трахеальных элементов, волокна и паренхимные клетки. Однако первичная ксилема, как и первичная флоэма, не имеет лучей, и этим ее организация отличается от организации вторичной ксилемы, представляющей собой комбинацию осевой и лучевой систем. Первичная ксилема обычно состоит из более ранней в онтогенетическом отношении части – протоксилемы, и более поздней – метаксилемы. Обе части имеют свои отличительные особенности, но в теле растения они настолько тесно объединены, что граница между ними может быть проведена лишь приблизительно.
Протоксилема дифференцируется в тех частях первичного тела растения, которые еще не закончили полностью рост и дифференциацию. В стебле протоксилема развивается среди активно удлиняющихся тканей и, следовательно, подвергается определенному воздействию с их стороны. Зрелые мертвые трахеальные элементы протоксилемы растягиваются и разрушаются. В корне протоксилемные элементы сохраняются дольше, т.к. там они созревают за пределами зоны максимального роста органов.
Протоксилема обычно содержит только трахеальные элементы, погруженные в паренхиму. Когда трахеальные элементы разрушаются, они могут быть полностью облитерированы окружающими паренхимными клетками.
Метаксилема начинает дифференцироваться в еще растущем первичном теле растения, но созревание ее происходит уже после того, как удлинение органа в основном закончено. Она, таким образом, испытывает меньшее влияние со стороны окружающих тканей, чем протоксилема.
Метаксилема – более сложная по составу ткань, чем протоксилема; в ней помимо трахеальных элементов и паренхимных клеток могут содержаться волокна. Паренхимные клетки либо рассеяны среди трахеальных элементов, либо располагаются радиальными рядами, похожими на лучи.
После завершения первичного роста трахеальные элементы метаксилемы сохраняются полностью, но становятся нефункционирующими по мере того, как формируется вторичная ксилема. У растений, не имеющих вторичного роста, метаксилема функционирует и в зрелых органах.
В первичной ксилеме наиболее узкими обычно бывают протоксилемные элементы. Позже дифференцирующиеся метаксилемные элементы имеют большую ширину.
Дифференциация трахеальных элементов
В дифференцирующихся трахеальных элементах сохраняется живой протопласт, который имеет полный набор органелл, включая вакуоли. Ядро становится полиплоидным и увеличивается в размерах. ЭПР представлен длинными цистернами. Заметное место в клетках занимают диктиосомы. В период роста клеточной оболочки хорошо выявляются микротрубочки.
После отложения вторичной оболочки в клетке начинается процесс лизиса остатков протопласта. Вакуоли в данном случае функционируют как лизосомы, поставляя гидролитические ферменты, необходимые для автолиза.
В зрелом состоянии протопласт разрушается. Остатком автолизированного протопласта трахеального элемента является бородавчатый слой, который служит одной из таксономических характеристик древесины. Клетка начинает функционировать как проводящий элемент.
Для трахеальных элементов характерны лигнифицированные оболочки со вторичными утолщениями и разнообразными порами.
Перфорации – сквозные отверстия в оболочках, соединяющие полости соседних клеток.
В трахеидах передвижение воды из клетки в клетку осуществляется через пары пор, замыкающие пленки которых отличаются высокой проницаемостью для воды и растворенных веществ. По членикам сосудов вода движется свободно через перфорации оболочки.
Продольные ряды члеников, связанных перфорациями, называются сосудами. Сосуды простираются на всю высоту растения.
Перфорированную часть оболочки членика сосудов называют перфорационной пластинкой. Пластинка может быть простой, с одной перфорацией, или сложной, если перфораций больше, чем одна.
Трахеальные элементы имеют различные типы вторичного утолщения оболочки:
1) в форме колец, не связанных друг с другом – кольчатые утолщения;
2) спиральные утолщения;
3) спирали, витки которых связаны между собой, – лестничные утолщения. Эти клетки в свою очередь сменяются клетками с
4) сетчатыми утолщениями и, наконец, элементами со
5) сплошными пористыми утолщениями.
Встречаются и промежуточные типы утолщений.
У ископаемых форм трахеальные элементы вытянутые в длину. Первым эволюционным типом водопроводящих клеток были трахеиды, которые имели суженные концы и сохранились таковыми у большинства современных споровых растений и голосеменных. Трахеиды служат не только каналами для прохождения воды и минеральных веществ, но и выполняют в стебле опорную функцию. Они твердые вследствие наличия в оболочках лигнина. Именно их твердость и позволила растениям приобрести прямостоячий облик.
В процессе эволюции наземных растений специализация трахеальных элементов шла в направлении разделения механической и проводящей функций. По мере специализации в древесине среди проводящих элементов появляются членики сосудов, более эффективные в проведении, чем в выполнении механических функций. В противоположность этому волокна эволюционировали как специализированные опорные элементы. Следовательно, от примитивных трахеид расходятся два направления специализации: одно – к сосудам, другое – к волокнам.
Что служит причиной восходящего тока?
Малый диаметр проводящих элементов ксилемы и свойство их клеточных оболочек притягивать воду создают необходимые условия для движения воды и растворенных веществ по ксилеме. Паренхимные клетки, расположенные вокруг сосудов, в результате интенсивного метаболизма вырабатывают осмотически активные вещества, которые поступают в сосуды или трахеиды. В трахеальные элементы направляется вода.
У многих видов клетки паренхимы образуют через поры выросты в полость сосудов. Эти выросты называются тилами. По мере вторжения тилы в полость сосуда замыкающая пленка поры разрушается с помощью ферментов, а нелигнифицированный защитный слой испытывает активный поверхностный рост, в результате чего в полости сосуда тила раздувается в виде шара. Ядро и часть цитоплазмы паренхимной клетки обычно мигрируют в тилу. Тилы способны запасать эргастические вещества, откладывать вторичные оболочки и даже дифференцироваться в склереиды.
Тилы блокируют полость сосудов и снижают проницаемость древесины.
Древесина, которая перестает функционировать как проводящая ткань, – ядровая. Обычно имеет более темный цвет. Активная древесина – заболонь. В заболони закупоривание сосудов тилами происходит только в ответ на поранения и инфекции.
Источник
Подъем воды по ксилеме растений.Ксилема цветковых растений содержит два типа проводящих воду структур — трахеиды и сосуды. В статье мы уже говорили о том, как выглядят эти структуры в световом микроскопе, а также на микрофотографиях, полученных с помощью сканирующего электронного микроскопа. Строение вторичной ксилемы (древесины) рассматривается в статье. Ксилема и флоэма образуют проводящую ткань высших, или сосудистых, растений. Эта ткань состоит из так называемых проводящих пучков, строение и распределение которых в стеблях двудольных растений с первичным строением показано на рисунке. То, что вода поднимается именно по ксилеме, нетрудно продемонстрировать, погрузив побег срезанным концом в разбавленный водный раствор красителя, например эозина. Подкрашенная жидкость, распространившись вверх по стеблю, заполнит сеть пронизывающих листья жилок. Если затем сделать тонкие срезы и рассмотреть их в световом микроскопе, то окажется, что краситель находится в ксилеме. Более эффектное доказательство подъема воды по ксилеме дают опыты с «кольцеванием». Такие опыты проводили задолго до того, как стали применяться радиоактивные изотопы, позволяющие очень легко проследить путь веществ в живом организме. В одном из вариантов опыта с одревесневшего стебля снимают узкое кольцо коры вместе с лубом, т. е. флоэмой. Довольно долго после этого находящиеся выше вырезанного кольца побеги продолжают расти нормально: следовательно, такое кольцевание не влияет на подъем воды по стеблю. Однако, если, приподняв лоскут коры, вырезать из-под него сегмент древесины, т. е. ксилемы, то растение быстро завянет. Таким образом, вода движется в побеги из почвы именно по этой проводящей ткани. Любая теория, объясняющая транспорт воды по ксилеме, не может не учитывать следующие наблюдения. 1. Анатомические элементы ксилемы — тонкие мертвые трубки, диаметр которых варьирует от 0,01 мм в «летней» древесине до 0,2 мм в «весенней» древесине. Удовлетворительное объяснение этим фактам дает теория сцепления (когезии), или теория натяжения. Согласно этой теории, подъем воды от корней обусловлен ее испарением клетками листа. Как мы уже говорили в статье, испарение снижает водный потенциал клеток мезофилла, прилежащих к ксилеме, и вода поступает в эти клетки из ксилемного сока, водный потенциал которого выше; при этом она проходит через влажные клеточные стенки у концов жилок, как показано на рисунке. Ксилемные сосуды заполняет сплошной столб воды; по мере того как вода выходит из сосудов, в этом столбе создается натяжение; оно передается вниз по стеблю до самого корня благодаря сцеплению (когезии) молекул воды. Эти молекулы стремятся «прилипнуть» друг к другу, потому что они полярны и притягиваются друг к другу электрическими силами, а затем удерживаются вместе водородными связями. Кроме того, они притягиваются к стенкам ксилемных сосудов, т. е. происходит их адгезия (прилипание) к ним. Сильная когезия молекул воды означает, что ее столб трудно разорвать — у него высокий предел прочности при растяжении. Растягивающее напряжение в клетках ксилемы приводит к генерированию силы, способной сдвигать весь водяной столб вверх по механизму объемного потока. Снизу вода поступает в ксилему из соседних клеток корня. При этом очень важно, что стенки ксилемных элементов жесткие и не спадаются при падении давления внутри, как это бывает, когда сосешь коктейль через мягкую соломинку. Жесткость стенок обеспечивается лигнином. Доказательством того, что жидкость внутри ксилемных сосудов сильно напряжена (растянута), служат суточные колебания диаметра древесных стволов, измеряемые инструментом под названием дендрограф. Минимальный диаметр отмечен днем, когда интенсивность транспирации наивысшая. Натяжение столба воды в ксилемном сосуде немного втягивает внутрь его стенки (из-за адгезии), и сочетание этих микроскопических сжатий дает фиксируемую прибором общую «усадку» ствола. Оценки прочности на разрыв столба ксилемного сока варьировали от 3000 доЗО 000 к Па, причем более низкие значения получены позднее. В листьях зарегистрирован водный потенциал порядка —4000 кПа, и прочность столба ксилемного сока, вероятно, достаточна, чтобы выдержать создающееся натяжение. Не исключено, конечно, что столб воды может иногда разрываться, особенно в сосудах большого диаметра. Критики изложенной теории подчеркивают, что любое нарушение непрерывности столба сока должно немедленно останавливать весь поток, так как сосуд заполнится воздухом и паром (явление кавитации). Кавитацию может вызвать сильное сотрясение, изгибание ствола, а также дефицит воды. Хорошо известно, что на протяжении лета содержание воды в стволе дерева постепенно снижается, древесина заполняется воздухом. Этим пользуются лесозаготовители, потому что такие деревья легче сплавлять. Однако разрыв водного столба в части сосудов слабо влияет на общую скорость объемного потока. Возможно, дело в том, что вода перетекает в параллельно проходящие сосуды или же обходит воздушную пробку, продвигаясь по соседним паренхимным клеткам и по стенкам. Кроме того, согласно расчетам, для поддержания наблюдаемой скорости потока вполне достаточно, чтобы в каждый момент времени функционировала хотя бы небольшая доля ксилемных элементов. У некоторых деревьев и кустарников вода перемещается лишь по более молодой наружной древесине, называемой заболонью. У дуба и ясеня, например, проводящую функцию выполняют в основном сосуды текущего года, а остальная часть заболони играет роль водного резерва. Новые ксилемные сосуды образуются на протяжении всего вегетационного периода, но главным образом в его начале, когда скорость водного потока максимальна. Вторая сила, обеспечивающая движение воды по ксилеме, — корневое давление. Его можно обнаружить и измерить в тот момент, когда срезают крону, а штамб с корнями некоторое время продолжает выделять сок из сосудов ксилемы. Этот процесс подавляется ингибиторами дыхания, например цианидом, и прекращается при недостатке кислорода и понижении температуры. Работа такого механизма, по-видимому, обусловлена активной секрецией солей и других водорастворимых веществ в ксилемный сок. В результате его водный потенциал падает, и вода поступает в ксилему из соседних клеток корня путем осмоса. Этот механизм создает гидростатическое давление порядка 100-200 кПа (в исключительных случаях 800 кПа); одного его для подъема воды по ксилеме обычно недостаточно, однако у многих растений оно, несомненно, способствует поддержанию ксилемного тока. У медленно транспирирующих травянистых форм этого давления вполне хватает, чтобы вызвать у них мутацию. Так называется выделение воды на поверхности растения1 в виде капель жидкости, а не пара. Все условия, тормозящие транспира-цию, например слабая освещенность и высокая влажность, способствуют гуттации. Она обычна у многих видов дождевых тропических лесов и часто наблюдается на кончиках листьев у всходов трав. – Также рекомендуем “Поглощение воды корнями. Апопластный транспорт в корне.” Оглавление темы “Транспорт у растений.”: |
Источник