Кто первый открыл сообщающиеся сосуды
Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.
Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.
Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:
Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.
Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.
Основное уравнение гидростатики
P = P1 + ρgh
где P1 – это среднее давление на верхний торец призмы,
P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.
ρgh – сила тяжести (вес призмы).
Звучит уравнение так:
Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.
Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости
Доказательство закона сообщающихся сосудов
Возвращаемся к разговору про сообщающиеся сосуды.
Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.
Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.
Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики
P = P1 + ρgh1
если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.
Это давление можно определить следующим образом
P = P2 + ρgh2
где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2
P1 + ρ1gh1 = P2 + ρ2gh2
В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем
ρ1h1 = ρ2h2
или
ρ1 / ρ2 = h2 / h1
т.е. закон сообщающихся сосудов состоит в следующем.
В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.
Свойства сообщающихся сосудов
Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.
Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.
Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.
В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.
Приборы основанные на законе сообщающихся сосудов
На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.
Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.
В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.
Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.
Применение сообщающихся сосудов
Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.
Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.
Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.
Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.
В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.
Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.
В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.
Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.
Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.
Видео по теме
Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.
Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:
Источник
Статьи
Основное общее образование
Линия УМК А. В. Перышкина. Физика (7-9)
Физика
Все мы ежедневно пользуемся сообщающимися сосудами – это чайник, лейка, в общем, это любая система ёмкостей, в которых жидкость, к примеру, вода, может свободно перетекать из одной ёмкости в другую. В чайнике, например, такими ёмкостями являются корпус и носик или корпус чайника и специальная ёмкость для определения уровня воды в нём. Что особенного в сообщающихся сосудах? Каким свойством или свойствами они обладают? Чем заслуживают наше внимание?
26 апреля 2019
Закон сообщающихся сосудов
Сосуды соединенные между собой, жидкость в которых может свободно перетекать, имеющие общее дно, называются сообщающимися. В соответствии с законом Паскаля, жидкость передаёт оказываемое на неё давление во всех направлениях одинаково. В открытых сосудах, атмосферное давление над каждым из них одинаково, значит, и давление жидкости на стенки сосудов будет одинаковым на любом уровне. Так как давление жидкости прямо пропорционально её плотности и глубине, в случае одинаковой жидкости в сообщающихся сосудах на одинаковой глубине будет одинаковое давление, что и объясняет выравнивание уровней жидкости в них. В случае разных жидкостей, чтобы на одинаковой глубине было одинаковое давление, жидкость с меньшей плотностью должна иметь больший уровень в сравнении с жидкостью большей плотности. Т.е.
ρ1 / ρ2 = h2 / h1
Физика. 7 класс. Учебник
Учебник соответствует Федеральному государственному образовательному стандарту основного общего образования. Большое количество красочных иллюстраций, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.
Купить
Свойство сообщающихся сосудов
Возьмем несколько различных по размеру и форме открытых сосудов, проделаем в каждом из них отверстие и соединим отверстия в сосудах трубками, чтобы жидкость, которую мы будем наливать в один из них, могла свободно перетекать из одного сосуда в другой. Для большего эффекта, пожмем трубки, которые их соединяют и наполним один из сообщающихся сосудов водой. Теперь откроем трубки и увидим, что когда жидкость перестанет перетекать, то, вне зависимости от формы и размера сосудов, уровни жидкости в каждом будут совершенно одинаковыми. Или проведём иной опыт – возьмём пластиковую бутыль и срежем донышко, а крышку плотно прикрутим, проделаем в ней небольшое отверстие и вставим в него небольшой шланг, место соединения шланга и крышки бутыли сделаем герметичным с помощью пластилина. Теперь закрепим бутыль вверх дном, а шланг расположим параллельно бутыли открытым концом чуть выше её срезанного дна. Заполним бутыль жидкостью, например, подкрашенной водой. И вновь мы увидим, что вне зависимости от высоты сообщающихся сосудов, уровень воды в бутыли будет точно таким же, как и уровень воды в шланге. В этом и заключается первое и основное свойство сообщающихся сосудов: в открытых сообщающихся сосудах уровни одинаковой жидкости будут одинаковыми. Это замечательное свойство нашло широкое применение в практике, но об этом поговорим чуть позже. А теперь возьмём U-образную стеклянную трубку. Это тоже сообщающиеся сосуды, их, в данном случае, называют коленами трубки. В правое колено нальём воду и она, конечно же, перетечёт в левое колено так, что уровни воды в обоих коленах будут одинаковыми – мы уже знаем, что так и должно быть, хоть пока что и не знаем, почему. А теперь в левое колено, очень аккуратно, чтобы жидкости не смешивались, нальём керосин или подкрашенный спирт. И мы увидим, что теперь верхние уровни каждой жидкости в коленах будут отличаться. Уровень спирта или керосина будет выше уровня воды. Заглянем заодно в таблицу плотности жидкостей и увидим, что плотность керосина или спирта меньше плотности воды, а уровень, наоборот, выше. Из этого эксперимента можно сделать вывод – если в открытых сообщающихся сосудах налиты две разные жидкости, то уровень будет выше у той, чья плотность меньше. Иными словами, плотности жидкостей и их уровни будут обратно пропорциональными. Настала пора объяснить, почему так получается.
Читайте также:
Проекты на уроках физики: плюсы и минусы
Что такое радуга?
Почему море соленое?
Почему небо голубого цвета?
Применение на практике
Благодаря своим свойствам, сообщающиеся сосуды нашли широкое применение в различных технических и бытовых устройствах. Перечислим некоторые из них:
- измерители плотности,
- жидкостные манометры,
- определители уровня жидкости (водомерное стекло, к примеру),
- домкраты,
- гидравлические прессы,
- шлюзы,
- фонтаны,
- водопроводные башни и т.д.
Свойство сообщающихся сосудов реализуется не только в физике. Такая известная поговорка «Если где-то прибыло, значит где-то убыло» фактически напрямую связана со свойством сообщающихся сосудов и означает, что в окружающем нас мире всё взаимосвязано, а значит – стремится к равновесию. Когда человек смещает это равновесие в одну сторону, это немедленно сказывается в чём-то другом. Над этим стоит задуматься, не так ли?
Материал по физике на тему «Сообщающиеся сосуды» для 7 класса.
Методические советы учителям
- При изучении этой темы обязательно необходима демонстрация. Описанные в статье эксперименты обязательно нужно показать детям в живом исполнении.
- Желательно продемонстрировать принцип действия фонтана (это также довольно не сложно сделать своими руками).
- Обратите внимание учащихся на формулу для двух жидкостей – это обратная пропорция. На нескольких примерах поясните смысл обратной пропорциональности.
- Рассмотрите ситуацию с тремя жидкостями (решите соответствующую задачу).
- А вот действие шлюзов лучше всего продемонстрировать с помощью видео.
#ADVERTISING_INSERT#
Источник
Сообщающиеся сосуды
На рисунке 105 изображено несколько сосудов. Все они имеют разную форму, но одна особенность делает их похожими друг на друга. Какая именно? Приглядевшись, можно заметить, что отдельные части всех этих сосудов имеют соединение, заполненное жидкостью.
Сосуды, имеющие общую (соединяющую их) часть, заполненную покоящейся жидкостью, называются сообщающимися.
Проделаем опыт. Соединим два стеклянных сосуда резиновой трубкой и, зажав трубку в середине, нальем в один из сосудов воду (рис. 106, а). Теперь откроем зажим и проследим за перетеканием воды из одного сосуда в другой, сообщающийся с первым. Мы увидим, что вода будет перетекать до тех пор, пока поверхности воды в обоих сосудах не установятся на одном уровне (рис. 106, б). Если один из сосудов оставить закрепленным в штативе, а другой поднимать, опускать или наклонять в сторону, то все равно, как только движение воды прекратится, ее уровни в обоих сосудах окажутся одинаковыми (рис. 106, в).Закон сообщающихся сосудов гласит:
В сообщающихся сосудах поверхности однородной жидкости устанавливаются на одном уровне.
(Сосуды, о которых говорится в этом законе, не должны иметь слишком малые диаметры, иначе будут наблюдаться капиллярные эффекты (см. § 29).)
Для доказательства этого закона рассмотрим частицы жидкости, находящиеся в том месте, где соединяются сосуды (внизу на рисунке 105, а). Так как эти частицы (вместе со всей остальной жидкостью) покоятся, то силы давления, действующие на них слева и справа, должны уравновешивать друг друга. Но эти силы пропорциональны давлениям, а давления — высотам столбов жидкости, со стороны которых действуют эти силы. Поэтому из равенства рассматриваемых сил следует и равенство высот столбов жидкости в сообщающихся сосудах.
До сих пор мы рассматривали случай, когда оба сообщающихся сосуда содержали одну и ту же жидкость. Если же в один из этих сосудов налить одну жидкость (например, воду с плотностью ρ1), а в другой — другую жидкость (например, керосин с плотностью ρ2), то уровни этих жидкостей окажутся разными (рис. 107). Однако поскольку жидкости и в данном случае будут покоиться, то по-прежнему можно утверждать, что давления, создаваемые и правым и левым столбами жидкостей (например, на уровне АВ на рисунке), равны:
ρ1 = ρ2.
Каждое из этих давлений может быть выражено с помощью формулы гидростатического давления:
p1 = ρ1gh1, p2 = ρ2gh2.
Приравнивая эти выражения, получаем
ρ1gh1 = ρ2gh2,
откуда
ρ1h1 = ρ2h2. (39.1)
Из этого равенства следует, что если ρ1 > ρ2, то h1 < h2. Это означает, что в сообщающихся сосудах, содержащих разные жидкости, высота столба жидкости с большей плотностью будет меньше высоты столба жидкости с меньшей плотностью. При этом высоты столбов жидкостей отсчитываются от поверхности соприкосновения жидкостей друг с другом.
1. Приведите примеры сообщающихся сосудов. 2. Сформулируйте закон сообщающихся сосудов. 3. Как располагаются поверхности разнородных жидкостей в сообщающихся сосудах? 4. Докажите закон сообщающихся сосудов, используя формулу (39.1). 5. На рисунке 108 изображено водомерное стекло, применяемое в паровых котлах (1 — паровой котел, 2 — краны, 3 — водомерное стекло). Объясните действие этого прибора. 6. На рисунке 109 изображен артезианский колодец. Слой земли 2 состоит из песка или другого материала, легко пропускающего воду. Слои 1 и 3, наоборот, водонепроницаемы. Объясните действие этого колодца. Почему вода бьет из него фонтаном? 7. На рисунке 110 дана схема устройства шлюза, а на рисунке 111 — схема шлюзования судов. Рассмотрите рисунки и объясните принцип действия шлюзов.
Рис. 1. Сообщающиеся сосуды
Сообщающиеся сосуды — сосуды, у которых есть несколько выходов (отверстий) любой формы, но сообщающиеся друг с другом посредством каналов, заполненных однородной жидкостью (рис. 1). В нашем рисунке сосуды (1-4) имеют разную форму и выходную площадь.
Закон сообщающихся сосудов: в сообщающихся сосудах (открытых сверху), заполненных однородной жидкостью, поверхности жидкости устанавливаются на одном уровне. Кроме того, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково и независимо от формы сосудов.
Рис. 2. Сообщающиеся сосуды. Манометр
Классические школьные задачи на данную тему касаются У-образных манометров (рис. 2). При наливании жидкости или выведении её из положения равновесия мы можем получить неодинаковые уровни жидкости в коленах манометра (двух различных выходах).
Задачи с использованием данных приборов часто касаются внесением в систему ряда различных несмешивающихся жидкостей, которые образуют покоящуюся систему с различными уровнями этих жидкостей.
Рис. 3. Манометр_Уровни жидкости
Разберём логику таких задач: пусть в манометр изначально была налита жидкость 1, плотностью
, затем в правое и левое колена были налиты жидкости 2 и 3 с плотностями и соответственно (рис. 3). Пусть площади колен и соответственно.
Выберем уровень АB так, чтобы с одной стороны от него (снизу) в коленах была одна и та же жидкость (жидкость 1). Введём высоты жидкостей в коленах относительно выбранного уровня (
, и ) (рис.3).
Тогда, по закону сообщающихся сосудов, поверхности однородной жидкости устанавливаются на одном уровне (в нашем рассмотрении это уровень AB, однородная жидкость снизу). С другой стороны, если жидкости находятся в равновесии, то, исходя из второго закона Ньютона, сумма сил, действующих на жидкость, равна 0. Таким образом, силы, действующие на жидкость 1 в правом колене и в левом, одинаковы:
(1)
- где
- — сила, действующая на слой AB со стороны жидкости 1,
- — сила, действующая на слой AB со стороны жидкости 2,
- — сила, действующая на слой AB со стороны жидкости 3.
По определению давления:
(2)
Тогда:
(3)
- где
- — давление, оказываемое жидкостью 1 на слой AB,
- — давление, оказываемое жидкостью 2 на слой AB,
- — давление, оказываемое жидкостью 3 на слой AB.
Таким образом, можно сказать, что сумма произведений давлений и соответствующих площадей, действующих на уровень АВ в правом и левом коленах, равны. Вспоминаем значение гидростатического давления:
(4)
Подставим (4) в (3):
(5)
Сократим на
:
(6)
Модифицируем (6) для общего случая:
(7)
- где
- — сумма произведений плотностей и высот несмешивающихся жидкостей в колене 1,
- — площадь колена 1,
- — сумма произведений плотностей и высот несмешивающихся жидкостей в колене 2,
- — площадь колена 2.
Уравнение (7) можно использовать для любого количества несмешивающихся жидкостей, которые наслоили друг на друга в обоих коленах манометра. Основное условие — жидкость должна покоится.
Часто применяется случай одинаковых площадей колен, тогда (7) можно упростить:
Закон сообщающихся сосудов
Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:
Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.
Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.
Основное уравнение гидростатики
P = P1 + ρgh
где P1 – это среднее давление на верхний торец призмы,
P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.
ρgh – сила тяжести (вес призмы).
Звучит уравнение так:
Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.
Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости
Доказательство закона сообщающихся сосудов
Возвращаемся к разговору про сообщающиеся сосуды.
Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.
Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.
Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики
P = P1 + ρgh1
если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.
Это давление можно определить следующим образом
P = P2 + ρgh2
где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2
P1 + ρ1gh1 = P2 + ρ2gh2
В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем
ρ1h1 = ρ2h2
или
ρ1 / ρ2 = h2 / h1
т.е. закон сообщающихся сосудов состоит в следующем.
В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.
Свойства сообщающихся сосудов
Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.
Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.
Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.
В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.
Приборы основанные на законе сообщающихся сосудов
На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.
Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.
В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.
Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.
Применение сообщающихся сосудов
Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.
Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.
Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.
Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.
В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.
Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.
В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.
Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.
Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.
Видео по теме
Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.
В дополнение к статье «Закон сообщающихся сосудов и его применение.» Вам может быть интересно:
Смотреть что такое «Сообщающиеся сосуды» в других словарях:
Сообщающиеся сосуды — Сообщающиеся сосуды, в которые налиты несмешивающиеся жидкости. СООБЩАЮЩИЕСЯ СОСУДЫ, соединены между собой в нижней части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если можно пренебречь капиллярными… … Иллюстрированный энциклопедический словарь
СООБЩАЮЩИЕСЯ СОСУДЫ — сосуды, соединённые между собой в нижней, части (рис.). В наполненных одинаковой жидкостью С. с., диаметр к рых настолько велик, что позволяет пренебречь капиллярным эффектом, уровни жидкости располагаются на одинаковой высоте независимо от формы … Физическая энциклопедия
СООБЩАЮЩИЕСЯ СОСУДЫ — соединены между собой в нижней части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если можно пренебречь капиллярными явлениями). На свойстве сообщающихся сосудов основано устройство жидкостных манометров,… … Большой Энциклопедический словарь
СООБЩАЮЩИЕСЯ СОСУДЫ — сосуды, соединённые между собой в ниж. части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если капиллярные явления не существенны). На свойстве С. с. основано устройство жидкостных манометров, водомерных… … Естествознание. Энциклопедический словарь
СООБЩАЮЩИЕСЯ СОСУДЫ — сосуды, соединённые между собой в нижней части. Однородная жидкость, находящаяся в С. с., устанавливается на одинаковом уровне независимо от формы сосудов и соединяющих их колен. Если С. с. наполнены жидкостями различной плотности р1 и р2, то… … Большая политехническая энциклопедия
сообщающиеся сосуды — сосуды, соединённые между собой в нижней части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если капиллярные явления не существенны). На свойстве сообщающихся сосудов основано устройство жидкостных манометров … Энциклопедический словарь
сообщающиеся сосуды — susisiekiantieji indai statusas T sritis fizika atitikmenys: angl. communicating vessels; connected vessels vok. kommunizierende Gefäße, n rus. сообщающиеся сосуды, m pranc. vases communicants, m … Fizikos terminų žodynas
сообщающиеся сосуды — физ. Соединённые между собой в нижней части … Словарь многих выражений
ДАВЛЕНИЕ — ДАВЛЕНИЕ, действие силы, приложенной к определенной поверхности. Действие силы на твердое тело в направлении, перпендикулярном к поверхности, производит нормальное давление на поверхность тела. Поверхность твердого тела находится под Д.… … Большая медицинская энциклопедия
КУЛЬТУРА РУССКОГО ЗАРУБЕЖЬЯ — ответвление русской культуры, созданной на протяжении неск. периодов российской истории эмигрантами; как правило, противостояла официальной. Истоки К.р.з. восходят к первым рус. полит, эмигрантам 16 17 вв., сам факт эмиграции к рых… … Энциклопедия культурологии
Источник