Лимфатические сосуды в глазу
Первые понятия о лимфообращении человека относят к XVII веку, однако благодаря затруднениям по выявлению хрупких сосудов с бесцветным содержимым его изучение прогрессировало очень медленно. В 1896 году Gerota предложил метод окраски лимфатических сосудов лимфотропными веществами, что послужило для описания анатомии в классических научных трактатах Poirer (1898), Iossifow (1930) и Rouviere (1932).
Лимфатическая система человека (ЛС) – отдел сосудистой системы, в составе которой объединяются пути транспорта лимфы (капилляры, сосуды, протоки) и лимфатические органы (узлы, фолликулы, миндалины, селезенка), собирающие лимфу из тканей и органов и отводящие её в венозную систему. Стенки лимфатических капилляров образованы однослойным эндотелием, через который легко проходят растворы электролитов, углеводы, жиры и белки. Капилляры сливаются в сосуды, в стенках которых могут встречаться гладкомышечные клетки и парные двустворчатые клапаны, их просвет неравномерен с чередованием расширений и стриктур.
Долгое время обсуждается вопрос о включении в состав ЛС т.н. прелимфатических путей (тканевые щели и периваскулярные пространства). Отчасти это связано с размытостью определения лимфы. Foldi называет лимфой только ту жидкость, которая находится внутри лимфатических сосудов и отделена от окружающих тканей эндотелием. Такое понимание лимфы разделяют наибольшее число сторонников, хотя оно и не является общепринятым. Так, Mayerson называл лимфой перикапиллярный фильтрат (прелимфу), смешанный с тканевой жидкостью и проникший в закрытую лимфатическую систему. Крупнейший российский лимфолог, академик Жданов, писал, что не следует называть лимфой жидкость, содержащуюся в тканях, потому что окружающая лимфатические капилляры жидкость и лимфа различны по составу, по химическим и физическим свойствам. Этой точки зрения мы и будем придерживаться далее.
Основные функции лимфы заключаются в поддержании постоянства состава и объема тканевой жидкости, возврате белка из межклеточной среды в кровеносное русло, всасывании и транспорте продуктов метаболизма и обеспечении механизма иммунитета. Непосредственно в структурах глаза лимфатические сосуды были описаны еще в 1861 г. . Однако необходимость в специальных методах их визуализации и изучения фактически привела к литературному забвению. В современных пособиях по анатомии и физиологии зрительного анализатора информация о ЛС отсутствует или ограничена перечислением узлов, принимающих лимфу от области век и орбиты. Тем не менее к настоящему времени в отечественной и, преимущественно, в зарубежной литературе имеется информация по анатомическим и функциональным исследованиям в этой области.
Анатомия лимфатической системы
Роговица. В 1849 г. Боумен, вводя в ее строму ртуть и ряд масляных растворов, визуализировал мгновенное появление перекрещивающихся линий – “роговичные трубочки” Боумена, а Реклингаузен (1962), обрабатывая роговицу ляписом (нитрат серебра), обнаружил в ее слоях черные линии и щели – “лимфатические канальцы” Реклингаузена. Это легло в основу просуществовавшей порядка 100 лет “теории лимфатических щелей” как начала ЛС переднего отрезка глаза.
Однако работы конца XX века (Jmai и Oikawa, 1972) окончательно доказали отсутствие прямой связи тканей роговицы с лимфатиками лимбальной зоны. В настоящее время принято считать, что тканевая жидкость роговицы лишь всасывается через стенку лимфатических капилляров лимба, которые и являются начальным отделом ЛС. Это было установлено Foldi (1972), отметившим выраженное замедление всасывания введенной в роговицу гомогенной серы после шейной лимфоблокады, и подтверждено Stremke (1979), описавшим эвакуацию меченого 35S роговичного гликопротеина из аллогенного роговичного трансплантата в регионарные лимфоузлы.
Современные иммуногистохимические исследования с антителами, специфичными к маркеру лимфатического эндотелия (LIVE-1), фиксируют наличие лимфатических сосудов в роговице только в случае ее неоваскуляризации.
Бульбарная конъюнктива. Почти 165 лет назад топографию конъюнктивальных лимфатиков стали изучать с помощью посмертных инъекций ряда веществ, а первую прижизненную окраску произвел Knusel (1924) с помощью субконъюнктивальной инъекции метиленового синего. До настоящего времени, а в ряде случаев и в наши дни применяют темно-синий краситель patent-blau. В 1974 г. Benedikt осуществил конъюнктивальную лимфографию с помощью флюоресцеина натрия. В СССР эта методика была усовершенствована и впервые использована для функциональных исследований ЛС глаза профессором В.Ф. Шмыревой.
В настоящее время в лимфатическом сплетении конъюнктивы выделяют ряд отделов, в каждом из которых присутствует поверхностный и глубокий слои.
Лимфатический круг Тейхмана: лимбальное круговое сплетение тончайших лимфатических сосудов. Находится в тесной связи с лимбальными артерио-венозными капиллярными аркадами. Радиальные лимфатические сосуды (поверхностное и глубокое сплетения) расположены перпендикулярно лимбу в зоне палисадов Фогта. Находясь в тесном контакте с венозным и артериальным руслом данной зоны, радиальные лимфатические сосуды далее дренируются в перикорнеальное лимфатическое кольцо.
Перикорнеальное лимфатическое кольцо образовано 2 и более относительно крупными коллекторами, расположенными на расстоянии 3-8 мм от лимба как в поверхностных, так и в глубоких слоях. От перикорнеального кольца лимфа оттекает далее в сторону экватора, в густую сеть широко анастомозирующих между собой извитых лимфатических сосудов. Диаметр их значительно больше, чем у кровеносных сосудов. Вдоль всего протяжения имеются перетяжки в местах расположения клапанов и расширения (ампулы) между ними, что придает сосудам вид четок.
По анатомии оттока лимфы из конъюнктивы эту сеть подразделяют на 4 квадранта: верхний, нижний, медиальный и латеральный. С височной стороны сосуды объединяются в крупный глубокий лимфатический выпускник, идущий в сторону наружной спайки век, с носовой они чаще сливаются в несколько сосудов. В 1930 г. Slorca описал верхний и нижний собирающие каналы. Первыми лимфоузлами для конъюнктивальных лимфатиков являются околоушные, также установлены дренажные связи с подчелюстными и шейными лимфоузлами.
Лимфатические сосуды тарзальной конъюнктивы мелкие и трудно контрастируемые. Отток лимфы осуществляется в сосуды век по краю хряща.
Лимфатические сосуды век подразделяют на поверхностное претарзальное сплетение, дренирующее кожу и мышцы, и глубокое посттарзальное (хрящ и конъюнктива век). От них лимфа поступает в сосуды, идущие в поверхностные и глубокие околоушные лимфоузлы, так же как и лимфатики слезной железы. Сосуды же слезного мешка сопровождают лицевую вену и впадают в поднижнечелюстные узлы, а сосуды носослезного канальца соединяются с сосудами носа и впадают как в поднижнечелюстные, так и в глубокие шейные лимфатические узлы.
Из передней камеры глаза внутриглазная жидкость, помимо классического пути “шлеммов канал – водяные вены – венозная система” и увеосклерального пути оттока, также дренируется по периваскулярным пространствам и частично, возможно, транссклерально, всасываясь, в конечном итоге, в капилляры лимфатической системы.
Одними из первых исследователей, предположивших, что около четверти объема водянистой влаги дренируется по увеосклеральному пути, были Bill и Hellsing (1965), также у истоков его исследований стояли Phillips (1971), Нестеров (1976), Черкасова (1977). Применяя интракамеральные инъекции соединения радиоактивного тория (торотраст), Jnomata (1972), а позже Cole и Monzo (1976) подтвердили путь оттока камерной влаги по увеосклеральному пути мимо хориоидеи к структурам зрительного нерва. Gruntzig (1976) в эксперименте на собаках, используя радиоактивный микроколлоид 99mTc, зафиксировал контраст в ретробульбарном пространстве и далее в шейных лимфоузлах.
В указанных выше исследованиях с торотрастом, Jnomata и Cole также показали путь оттока жидкости из радужки, цилиарного тела и хориоидеи по увеосклеральному пути и периваскулярным пространствам этих структур. Несмотря на предположения в начале XX века о наличии лимфатических сосудов в этих структурах, исследованиями с помощью электронной микроскопии было показано их отсутствие (Casley-Smith, 1978).
Этой же методикой была подробно исследована структура перивазальных пространств. Gartner (1966) показал, что артериолы и венулы сосудистого тракта и сетчатки сопровождаются пространствами, содержащими коллагеновые фибриллы, отростки базальной мембраны и адвентициальных клеток. Foldi (1972) после шейной лимфоблокады отмечал офтальмоскопическую картину ретинального отека. Позднее в экспериментах на кошках Casley-Smith (1978), полностью удаляя и перевязывая все поверхностные и глубокие лимфоузлы и протоки, фиксировал с помощью электронной микроскопии выраженное расширение периваскулярных пространств радужки, хориоидеи и сетчатки, наполненных жидкостью с высоким содержанием белка. Эти исследования косвенно доказывают связь данных структур с лимфатической системой.
В целом, на основании целого ряда исследований, в конце XX века зарубежные лимфологи сошлись во мнении, что стекловидное тело, интерстиций между глиальными клетками диска зрительного нерва, мягкая мозговая оболочка между пучками нейронов зрительного нерва, перивазальные пространства центральных сосудов и субарахноидальное пространство зрительного нерва являются единым прелимфоваскулярным путем.
Действительно, применяя современный гистохимический анализ, Gausas (1999) не обнаружил собственных лимфатических сосудов в орбите ни в мышцах, ни в жировой ткани, за исключением слезной железы и dura mater зрительного нерва. Анализ с применением специфических моноклональных антител к лимфатическим сосудам (D2- 40) также не обнаружил таковых в орбитальном содержимом. В 2011 г. Gupta (Торонто, США) выступила на Всемирном глаукомном конгрессе с докладом об обнаружении лимфатических сосудов в структуре цилиарного тела. На вопрос о возможных дальнейших путях оттока лимфы профессор сказала, что предполагает наличие лимфатических путей в орбите, хотя это не доказано. Исходя из работ ее коллектива, было предложено увеосклеральный отток жидкости называть увеолимфатическим.
Физиология лимфатической системы
Возможности лимфокинетики переднего отрезка глаза стали активно изучаться спустя несколько лет после открытия в этой зоне ЛС. К тому времени в офтальмологической практике для терапии воспалительных заболеваний глаз с целью рассасывания инфильтратов и анальгезирующего эффекта активно применяли дионин (этилморфина гидрохлорид) в виде 1-2% раствора и мази. Wolfberg (1899) первый обратил внимание на “целебное наполнение всего тракта конъюнктивы и краев век лимфой” при инстилляции дионина. Дальнейшие исследования Birch-Hirschfeld (1909), Friedburg (1978) и Gruntzieg (1979) показали выраженное расширение лимфатической системы конъюнктивы, сопровождающееся усилением пассажа жидкости. Sugar (1957) выявил расширение лимфатиков после субконъюнктивальной инъекции кортизона.
Исследования лимфокинетики с помощью наиболее распространенных красителей (метиленовый синий, patent-blau) имели существенные недостатки, заключающиеся в трудности самостоятельного заполнения сосудов и невозможности объективного определения динамики лимфотока в связи с высоким молекулярным весом красителей и низкой скоростью лимфотока. Таким образом, оптимальными красителями послужили низкомолекулярные соединения (флюоресцеин Na). Стенка лимфатических сосудов и капилляров проницаема на всем протяжении, и при субконъюнктивальной инъекции флюоресцеин поступает по всей окружности созданного депо красителя, свободно продвигаясь естественным током лимфы. Окрашивая одним из первых жидкость передней камеры флюоресцеином после фистулизирующей антиглаукомной хирургии, Benedikt (1974) показал, что поступая в фильтрационную подушку внутриглазная жидкость активно всасывается в лимфатическую сеть конъюнктивы.
После субконъюнктивального введения в паралимбальную зону верхнего сегмента 0,05 мл стерильного 10% раствора флюоресцеина Na проф. В.Ф. Шмырева производила фотосъемку и оценивала число сосудов, структуру, минимальный, максимальный и средний диаметры, линейную и объемную скорости лимфотока. Согласно ее данным, основная функция лимфатиков бульбарной конъюнктивы состоит в освобождении интерстициального пространства от избытка тканевой жидкости, макромолекул и клеточных остатков. В норме лимфатические сосуды находятся в основном в спавшемся состоянии. В условиях патологии, сопровождающейся деструкцией тканей, лимфатическая система начинает активно функционировать.
Известно, что количество лимфы зависит от уровня клеточного метаболизма. Действительно, в норме у лиц до 50 лет при флюоресцентной лимфоангиографии лимфатики выявлялись только в 17%. С увеличением возраста их число возрастало до 33% (60 лет) и до 65% (старше 60). Линейная скорость лимфотока в контрастированных сосудах большая (до 7 мм/мин) – признак быстрой эвакуации лимфы. Объемная скорость лимфотока низкая (до 1 мм3 /мин) – признак отсутствия потребности в активном лимфатическом дренаже тканей. Известно, что с возрастом происходят изменения в структурах дренажной системы глаза, обусловленные естественным процессом старения, следствием чего и явилась более частая выявляемость лимфатических сосудов у лиц пожилого возраста.
Иную картину наблюдали при глаукоме. Число контрастируемых сосудов увеличивалось вплоть до мощной разветвленной сети (до 10 анастомозирующих лимфатиков увеличенного диаметра до 1 мм). Средний диаметр оказывается в 1,5 раза больше, чем при возрастной норме. Перетяжки в местах расположения клапанов исчезают, ампулообразные расширения сглаживаются, и лимфатические сосуды приобретают вид колбасообразных цилиндров. Линейная скорость лимфотока уменьшается в 1,5 раза, а объемная скорость увеличивается почти в 4 раза за счет увеличения количества контрастированных сосудов и их диаметра. В целом, лимфатическая система переднего сегмента глаза при глаукоме характеризуется нагруженностью, а в запущенных случаях – перегруженностью.
Степень функциональной нагрузки связывается со степенью деструкции дренажной зоны склеры. При слабой степени деградации коллагеновых волокон и сохранении резерва путей оттока внутриглазной жидкости объёмная скорость лимфотока в 5 раз меньше, чем при грубых деструк- тивных изменениях склеральных дренажных путей. Накопление продуктов распада тканей дренажной зоны, вероятно, и ведет к активному функциониро- ванию лимфатической системы переднего сегмента глаза и характерной лимфоангиографической кар- тине при первичной глаукоме. Результатом исследований В.Ф. Шмыревой также стали рекомендации по выбору медикаментозного и хирургического лечения в зависимости от нагрузки на лимфатики, а также заключения о важной роли бульбарной конъюнктивы в пролонгации гипотензивного эффекта антиглаукомных операций.
Таким образом, лимфатическая система глаза является важным анатомо-физиологическим дренажным комплексом, обладающим мощными резервными возможностями в условиях патологии, значение которой следует изучать и в дальнейшем.
Источник
Известно, что лимфатическая система является одной из гомеостатических систем организма, что определяется ее способностью участвовать в регуляции многочисленных биологических процессов, происходящих во внеклеточном матриксе. Из интерстициального пространства клетки получают необходимые для своей жизнедеятельности питательные вещества, регуляторные гуморальные сигналы. В нем происходит развитие процессов иммунного реагирования, утилизации биологически реактивных продуктов, появляющихся в процессе жизнедеятельности клеток, развития деструктивно-воспалительного процесса, метаболических нарушений и др. Уникальная роль лимфатической системы в регуляции указанных процессов связана с тем, что начальные лимфатические капилляры имеют неплотные контакты между соседними эндотелиальными клетками, что позволяет удалять из интерстициального пространства соединения, обладающие высокой молекулярной массой, продукты клеточной деструкции и даже клетки, в отличие от кровеносных капилляров, транспорт через эндотелиальную стенку которых строго ограничен размером молекул [1].
В органе зрения, особенно в его бессосудистой зоне, средой, обеспечивающей снабжение глаза кислородом, развитие метаболических процессов, доставку нейротрансмиттеров и других биологически активных молекул, необходимых для межклеточных взаимодействий, удаления продуктов жизнедеятельности, является внутриглазная жидкость (ВГЖ), заполняющая переднюю и заднюю камеры глаза и омывающая его структуры [2].
Не вызывает сомнения, что продукция и динамика оттока ВГЖ имеют решающее значение для обеспечения функционального состояния органа зрения, а ее нарушения играют значимую роль в развитии патологических процессов. Однако до настоящего времени остается дискуссионным вопрос о путях оттока ВГЖ.
Согласно данным научной литературы, основными структурами глаза, связанными с динамикой тканевой жидкости, являются цилиарное тело (место продукции внутриглазной жидкости), трабекулярная сеть и увеосклеральный путь (основные пути оттока тканевой жидкости) [3, 4].
Считается, что ВГЖ выделяется эпителиальной выстилкой цилиарных отростков и покидает переднюю камеру через трабекулярную сеть, шлеммов канал и далее через водяные и эписклеральные вены поступает в системный кровоток [5]. При оттоке по увеосклеральному пути ВГЖ движется через основание радужной оболочки (угол камеры, образованный радужной оболочкой и роговицей) интерстиций цилиарного тела в супрахориоидальное пространство [6]. В дальнейшем, чтобы покинуть супрахориоидальное пространство, ВГЖ протекает через рыхлую соединительную ткань вокруг кровеносных сосудов склеры, а также непосредственно через ее ткани и проникает в ткани орбиты периокулярно. Однако многие аспекты дренажа ВГЖ из супрахориоидального пространства остаются до конца не изученными, а ее объем, покидающий глаз по увеосклеральному пути, значительно варьирует [7].
Данные научных исследований свидетельствуют, что от 5 до 35% общего оттока ВГЖ приходится на увеосклеральный дренаж. При этом отмечается, что в условиях прогрессирования глаукоматозного процесса и связанных с ним деструктивных процессов в трабекулярном аппарате увеосклеральный путь оттока берет на себя часть функций по отведению ВГЖ, что более выражено в артифакичных глазах, при этом доля увеосклерального пути в общем оттоке внутриглазной жидкости до и после операции преобладает у пациентов с развитой стадией глаукомы [8].
По мнению ряда авторов, увеосклеральный отток может быть рассмотрен как аналог лимфатического дренажа в других органах и позволяет рассматривать данный путь как направленный на утилизацию крупномолекулярных белков, продуктов метаболизма, клеточной деструкции и др., находящихся в ВГЖ, т. е. обеспечивающий поддержание гомеостатического равновесия в органе зрения, что в организме является одной из функций лимфатической системы [2, 9, 10].
Результаты научных исследований с использованием прижизненных функциональных методов тестирования свидетельствуют о существования лимфатических путей оттока ВГЖ [11—13], однако данные о визуализации структурных элементов лимфатической системы в органе зрения подвергаются сомнению и являются предметом научной дискуссии [14].
В настоящее время, благодаря использованию молекулярных маркеров эндотелия лимфатических сосудов (Podoplanin (Pdpn), LYVE-1, Prox-1, VEGF-C, VEGFR), является доказанным наличие лимфатических сосудов в конъюнктиве и отсутствие как лимфатических, так и кровеносных сосудов в роговице глаза человека в условиях нормы [15]. В то же время при развитии воспалительного процесса в роговице были выявлены кровеносные и лимфатические сосуды [16]. Используемые в научных исследования маркеры лимфатических структур VEGF-C, VEGFR-3, Pdpn и LYVE-1 были локализованы на мембранах эндотелиальных клеток, имеющих ультраструктурные особенности эндотелия лимфатических сосудов. Авторы предполагают, что лимфангиогенез при развитии воспалительного процесса в роговице глаза взаимосвязан с ангиогенезом и может быть частично опосредован влиянием VEGF-C и его рецептора VEGFR-3 [17]. При этом отмечается меньшая скорость движения клеток в лимфатических сосудах по сравнению со скоростью движения клеток крови в кровеносных сосудах [18].
С помощью иммуногистохимического окрашивания на маркеры эндотелия лимфатических сосудов (Pdpn и LYVE-1) было показано наличие лимфатических сосудов в интраорбитальной части зрительного нерва человека [19]. Положительное окрашивание на Pdpn в оболочках зрительного нерва наблюдали при исследовании лимфатических структур в органе зрения плода человека на 10—32-й неделе беременности [20].
В научной литературе последних лет имеются работы, в которых описаны лимфатические сосуды в цилиарном теле. Лимфатические сосуды в цилиарном теле обнаружены с помощью молекулярных маркеров эндотелия лимфатических сосудов (LYVE-1 и Pdpn) методами иммуногистохимии, иммунофлюоресценции и иммуноэлектронной микроскопии [21—23]. Авторы описывают данные структуры как образующие трабекулы в цилиарном теле, расположенные в виде узких полосок вдоль цилиарной мышцы и иногда лежащие отдельно в строме цилиарного тела. Методом электронной микроскопии были выявлены плоские клетки с тонкими цитоплазматическими выростами [21]. Они не окрашивались на маркеры эндотелия кровеносных сосудов (CD34) и не имели базальной мембраны. Данные структуры были охарактеризованы как лимфатические каналы [22] или органоспецифические лимфатические капилляры [23].
Считается, что сосудистая оболочка играет важную роль в дренаже водянистой влаги из передней камеры глаза по увеосклеральному пути оттока [24]. Однако вопрос о наличии лимфатической системы в собственно сосудистой оболочке глаза человека остается дискуссионным. Лимфатические синус-подобные структуры, выстланные фибробластоподобными клетками с большими межклеточными промежутками и внутриклеточной фенестрацией, были продемонстрированы с помощью трансмиссионной и сканирующей электронной микроскопии в сосудистой оболочке глаза обезьян [25, 26]. Кроме того, было показано, что сосудистая оболочка глаза птиц содержит тонкостенные лакуны, сообщающиеся с венозной системой. Авторы полагают, что данные лакуны являются лимфатическими сосудами [27].
Другими авторами в сосудистой оболочке глаза человека и мышей было показано большое содержание LYVE-1 положительных макрофагов, но типичных лимфатических сосудов обнаружено не было. Авторы полагают, что макрофаги вовлечены в метаболизм гиалуроновой кислоты или участвуют в формировании временных лимфатических сосудов в условиях воспаления [28, 29].
В 2015 г. была опубликована статья М. Коina и соавт. [30], в которой были дифференцированы и визуализированы лимфатические каналы в хориоидее глаза человека с помощью молекулярных маркеров эндотелиоцитов лимфатических и кровеносных сосудов и электронной микроскопии. Однако в ответ вышла публикация, ставившая под сомнение результаты исследования данных авторов [14]. Другими исследователями в структуре хориоидеи были выявлены лимфатические каналы и лимфатические лакуны. Лимфатические каналы были визуализированы в сосудисто-капиллярной пластинке и сосудистой пластинке и ограничены Podoplanin+, Prox-1±, LYVE-1±эндотелиоподобными клетками, фибробластами и пигментными клетками. Лимфатические лакуны были локализованы в надсосудистой пластинке и выстланы эндотелиоподобными клетками и фибробластами [31, 32].
Противоречивые данные получены при иммунофлюоресцентном окрашивании структур переднего сегмента глаза. При использовании антител к подопланину (Pdpn) и LYVE-1 маркировались такие структуры, как трабекулярная сеть и передняя поверхность радужки, отмечали одиночные отростчатые LYVE-1±окрашенные клетки в цилиарном теле, трабекулярной сети и радужной оболочке, а при использовании лимфатических маркеров VEGFR-3 и Prox-1 не наблюдали положительного окрашивания структур переднего сегмента глаза [22].
Уникальной транспортной структурой является шлеммов канал в связи с его функцией поддержания гомеостаза жидкости путем сброса водянистой влаги из глаза в системное кровообращение. Полагают, что эндотелиоциты, выстилающие внутреннюю стенку шлеммова канала, имеют характеристики как лимфатического, так и кровеносного эндотелия [33]. В настоящее время известно, что эндотелий шлеммова канала положительно окрашивается на такие маркеры, как Prox-1, интегрин α9, CD31 и VE-cadherin, но отрицательно (или окрашивается очень слабо) на лимфатические маркеры LYVE-1, Pdpn и маркер гладкомышечных клеток мышечный актин [34]. При изучении развития шлеммова канала в постнатальном периоде у мышей была выявлена экспрессия маркера Prox-1 и экспрессия рецептора эндотелиоцитов лимфатических судов VEGFR-3. Используя методы делеции гена, авторы выявили влияние фактора роста лимфатических сосудов VEGF-C и его рецептора VEGFR-3 на развитие шлеммова канала. Кроме того, инъекция рекомбинантного VEGF-C вызывала устойчивое снижение уровня внутриглазного давления у мышей. Авторы полагают, что эти данные свидетельствуют об эволюционно сохранившемся лимфатическом фенотипе шлеммова канала [35]. Другими авторами у трансгенных мышей Prox-1-GFP была выявлена экспрессия Prox-1 в области лимба и радужно-роговичного угла, где находится шлеммов канал, эндотелий которого экспрессировал CD31+, но не окрашивался на LYVE-1. Авторы сделали заключение, что шлеммов канал отличается от типичных лимфатических сосудов отсутствием экспрессии LYVE-1 [36]. Не было обнаружено лимфатических сосудов в склере глаза человека, хотя выявлялись отдельные LYVE-1+ клетки, в первую очередь в эписклере [37, 38].
Из сказанного следует, что имеющиеся в литературе данные о наличии лимфатических сосудов в сегментах глаза человека являются противоречивыми и неоднозначными, что подтверждается публикацией, свидетельствующей о необходимости консенсуса по принятию точных критериев лимфатических сосудов [39]. Согласно данному консенсусу, доказательство, что выявленные сосуды являются лимфатическими, должно основываться на предложенных критериях лимфатических сосудов: 1) наличие/отсутствие эритроцитов; 2) использование более чем одного маркера эндотелия лимфатических сосудов в сравнении с теми регионами, где существование лимфатических сосудов хорошо установлено (в конъюнктиве глаза и в роговице при воспалении); 3) использование электронной и иммуноэлектронной микроскопии [39].
Таким образом, до настоящего времени нет официально признанных доказательств визуализации именно лимфатических путей оттока в сегментах глаза человека, что, вероятно, связано с органоспецифическими особенностями лимфатических структур глаза человека и поэтому сложностью их выявления традиционными способами.
Тем не менее, обобщая данные научной литературы и собственные данные о структуре и функции лимфатической системы различных органов человека, мы рассматриваем глаз как орган нервной системы, который имеет свою дренажную лимфатическую систему [2, 9, 23, 31, 32].
Исходя из представлений о дренаже тканевой жидкости из вещества головного мозга [40], следует существование сети прелимфатических путей: 1-й путь — по периваскулярным пространствам сосудов, залегающих в веществе мозга, тканевая жидкость мозга поступает в подпаутинное пространство, в периаксиальные и периневральные пространства головных нервов, в лимфатические сосуды и узлы головы и шеи; 2-й путь — по периаксиальным и периневральным пространствам, берущим свое начало непосредственно от нейрона, продукты его жизнедеятельности отводятся в субарахноидальную щель и в лимфатические сосуды и узлы носоглотки, шейной и паравертебральной областей; 3-й путь — по периваскулярным пространствам сосудов, сопровождающих черепно-мозговые и спинальные нервы, интерстициальная жидкость поступает в субарахноидальное пространство и лимфатические узлы носоглотки, шейной и паравертебральной областей [40].
В настоящее время существует сходная концепция «глимлимфатической» системы головного мозга, описывающая пути взаимодействия между спинномозговой и тканевой жидкостью, согласно которой транспорт молекул из интерстиция осуществляется по параваскулярным пространствам и отросткам астроцитов [41].
Согласно представлениям о лимфатическом регионе, включающем несосудистые пути движения тканевой жидкости, — прелимфатики, лимфатические сосуды и регионарные лимфатические узлы [10], предложено представление о лимфатическом регионе глаза, в котором на основании имеющихся данных выделены первые 2 звена — тканевые щели (прелимфатики), лимфатические капилляры цилиарного тела, хориоидеи и склеры. Третьим звеном лимфатического региона рассматривают лимфатические узлы головы и шеи [23, 31, 32, 42].
Анализ данных научной литературы и результатов собственных исследований позволяет сделать предположение о существовании в дренажной системе глаза нескольких механизмов оттока ВГЖ, направленных на поддержание различных звеньев гомеостаза органа зрения и несущих функциональную специфику. Первый (быстрый) путь представлен трабекулярной сетью, шлеммовым каналом и водяными венами, сбрасывающими ВГЖ непосредственно в кровоток и обеспечивающими гидродинамическое постоянство жидких сред глаза. Второй (медленный) путь включает 3 звена стандартного лимфатического региона, что позволяет рассматривать данный механизм оттока ВГЖ как отток через лимфатическую систему, вероятно, с целью утилизации продуктов метаболизма и клеточной деструкции, поддержания иммунного гомеостаза.
Авторы заявляют об отсутствии конфликта интересов.
Сведения об авторах
Бгатова Наталия Петровна — д-р биол. наук, проф., зав. лаб. ультраструктурных исследований ФГБНУ «НИИ клинической и экспериментальной лимфологии»
e-mail: n_bgatova@ngs.ru
https://orcid.org/0000-0002-4507-093X
Источник