Лучевая анатомия сосудов головного мозга

Лучевая анатомия сосудов головного мозга thumbnail

Основными методами прижизненного исследования структуры голов­ного мозга в настоящее время являются КТ и особенно МРТ.

Показания к их выполнению устанавливают совместно лечащие врачи – невропатолог, нейрохирург, психиатр, онколог, офтальмолог и специалист в области лучевой диагностики.

Наиболее часто показаниями к лучевому исследованию головного мозга служат наличие признаков нарушения мозгового кровообраще­ния, повышение внутричерепного давления, общемозговая и очаговая неврологическая симптоматика, нарушения зрения, слуха, речи, памяти.

Компьютерные томограммы головы производят при горизонтальном положении пациента, выделяя изображения отдельных слоев черепа и го­ловного мозга (рис. III. 189). Специальной подготовки к исследованию не требуется. Полное исследование головы состоит из 12-17 срезов (в зависи­мости от толщины выделяемого слоя). Об уровне среза можно судить по конфигурации желудочков мозга; они, как правило, видны на томограммах. Часто при КТ мозга используют методику усиления путем внутривенного введения водорастворимого контрастного вещества.

На компьютерных и магнитно-резонансных томограммах хорошо разли­чимы полушария большого мозга, мозговой ствол и мозжечок. Можно дифференцировать серое и белое вещество, очертания извилин и бо­розд, тени крупных сосудов, ликворные пространства. Как КТ, так и МРТ наряду с послойным изображением могут реконструировать трех­мерное отображение и анатомическую ориентацию во всех структурах черепа и головного мозга. Компьютерная обработка позволяет полу­чить увеличенное изображение интересующей врача области.

При изучении структур мозги МРТ имеет некоторые преимущества перед КТ. Во-первых, на MP-томограммах более четко различаются структурные элементы головного мозга, отчетливее дифференцируются белое и серое вещество, все стволовые структуры. На качестве магнитно-резонансных то­мограмм не отражается экранирующее действие костей черепа, ухудшаю­щее качество изображения при КТ. Во-вторых, МРТ можно производить в разных проекциях и получать не только аксиальные, как при КТ, но и фронтальные, сагиттальные и косые слои. В-третьих, это исследование не связано с лучевой нагрузкой. Особым достоинством МРТ является возмож­ность отображения сосудов, в частности сосудов шеи и основания головно­го мозга, а при контрастировании гадолинием – и мелких сосудистых вет­вей (см. рис. 11.48-П.50).

Ультразвуковое сканирование также может быть использовано для ис­следования головного мозга, но лишь в раннем детском возрасте, когда со­хранен родничок. Именно над мембраной родничка и располагают детек­тор ультразвуковой установки. У взрослых производят преимущественно одномерную эхографию (эхоэнцефалографию) для определения расположения срединных структур мозга, что необходимо при распознавании объемных процессов в мозге.

Головной мозг получает кровь из двух систем: двух внутренних сон­ных и двух позвоночных артерий. Крупные кровеносные сосуды различи-

Лучевая анатомия сосудов головного мозга

Ряс. IIIЛ 89. Компьютерные томограммы головного мозга, а, б, в, г – срезы на разных уровнях.

мы на компьютерных томограммах, полученных в условиях внутривенного искусственного контрастирования. В последние годы быстро развилась и получила всеобщее признание MP-ангиография. Ее достоинствами явля­ются неинвазивность, простота выполнения, отсутствие рентгеновского облучения.

Лучевая анатомия сосудов головного мозга

Рис. III. 189. Продолжение.

Однако детальное изучение сосудистой системы мозга возможно только при ангиографии, причем предпочтение всегда отдают цифровой регистрации изображения, т.е. выполнению ДСЛ. Катетеризацию сосудов обычно осущест­вляют через бедренную артерию, затем катетер под контролем рентгеноско­пии проводят в исследуемый сосуд и вливают в него контрастное вещество. При введении его в наружную сонную артерию на ангиограммах отобража-

Лучевая анатомия сосудов головного мозга

Рис. III. 190. Каротидные артериограммы черепа (норма), а – прямая проекция; б – боковая проекция.

ются ее ветви – поверхностная височная, средняя оболочечная и др. Если контрастное вещество вливают в общую сонную артерию, то на снимках на­ряду с ветвями наружной сонной артерии дифференцируются сосуды мозга. Наиболее часто прибегают к каротидной ангиографии – контрастное веще­ство вводят во внутреннюю сонную артерию. В этих случаях на снимках вы­рисовываются только сосуды мозга (рис. III. 190). Вначале появляется тень артерий, позднее – поверхностных вен мозга и, наконец, глубоких вен мозга

Лучевая анатомия сосудов головного мозга

Лучевая анатомия сосудов головного мозга

Pec. Ш.191. Эмиссионная однофотонная томография головного мозга до (а) и после (б) эпилептического припадка. Снижение функциональной активности участка мозга (указан стрелками).

и венозных пазух твердой мозговой оболочки, т.е. синусов. Для исследова­ния системы позвоночной артерии контрастное вещество вводят непосред­ственно в этот сосуд. Такое исследование называют вертебральной ангиогра­фией.

Ангиографию, как правило, производят после КТ или МРТ. Показа­ниями к выполнению ангиографии служат сосудистые поражения (инсульт, субарахноидальное кровоизлияние, аневризмы, поражения экстракрани­альной части магистральных сосудов шеи). Ангиографию осуществляют также при необходимости выполнения внутрисосудистых лечебных вмеша­тельств – ангиопластики и эмболии. Противопоказаниями считают эндо­кардит и миокардит, декомпенсацию деятельности сердца, печени, почек, очень высокую артериальную гипертензию, шок.

Исследование мозга методами радиоиуклидной диагностики ограничива­ется в основном получением функциональных данных. Принято считать, что величина мозгового кровотока пропорциональна метаболической ак­тивности головного мозга, поэтому, применив соответствующий РФП, на­пример пертехнетат, можно выявить участки гипо- и гиперфункции (рис. Ш.191). Такие исследования проводят для локализации эпилептических очагов, при выявлении ишемии у пациентов с деменцией, а также для изу­чения ряда физиологических функций головного мозга. В качестве метода радиоиуклидной визуализации, помимо сцинтиграфии, с успехом применя­ют однофотонную эмиссионную томографию и особенно позитронную эмиссионную томографию. Последняя по техническим и экономическим соображениям, как отмечалось ранее, может быть выполнена только в крупных научных центрах.

Лучевые методы незаменимы в исследовании кровотока в мозге. С их помощью устанавливают положение, калибр и очертания краниальных вет­вей дуги аорты, наружной и внутренней сонных артерий, позвоночных ар-

терий, их вне- и внутримозговых ветвей, вен и синусов мозга. Лучевые ме­тоды позволяют регистрировать направление, линейную и объемную ско­рость кровотока во всех сосудах и выявлять патологические изменения как в строении, так и в функционировании сосудистой сети.

Йаиболее доступным и весьма эффективным методом изучения мозгового кровотока является ультразвуковое исследование. Речь идет, естественно, только об ультразвуковом исследовании внечерепных сосудов, т.е. сосудов шеи. Оно показано при диспансерном и клиническом исследовании на самом первом этапе. Исследование не обременительно для пациента, не со­провождается осложнениями, не имеет противопоказаний.

Ультразвуковое исследование выполняют посредством как сонографии, так и, главным образом, допплерографш – одномерной и двухмерной {цвет-ное допплеровское картирование). Специальной подготовки больного не тре­буется. Процедуру обычно производят при горизонтальном положении его на спине. Руководствуясь анатомическими ориентирами и результатами пальпации, определяют местоположение изучаемого сосуда и покрывают поверхность тела над ним гелем или вазелиновым маслом. Датчик устанав­ливают над артерией, не сдавливая ее. Затем его постепенно и медленно продвигают по ходу артерии, рассматривая изображение сосуда на экране. Исследование проводят в режиме реального времени с одновременной ре­гистрацией направления и скорости кровотока. Компьютерная обработка обеспечивает получение на бумаге цветного изображения сосудов, доппле-рограммы и соответствующих цифровых показателей. Исследование прово­дят обязательно с обеих сторон.

Читайте также:  Сосуды головного мозга у кошек

Альберт Эйнштейн любил фильмы Чарли Чаплина и относился с большой симпатией к созданному им герою. Однажды он написал в письме к Чаплину: «Ваш фильм “Золотая лихорадка” понятен всем в мире, и Вы непременно станете великим человеком». На это Чаплин ответил так: «Я Вами восхищаюсь еще боль­ше. Вашу теорию относительности никто в мире не понимает, а Вы все-таки стали великим человеком».

Этот обмен любезностями напомнил нам сцену, имев­шую место на одном из заседаний Всесоюзной науч­ной школы по гастроэнтерологии. Председатель школы академик А.М. Угол ев, по специальности фи­зиолог, шутя заметил, выступая перед аудиторией: «Я считал бы профессора Линденбратена идеальным человеком, если бы он не был клиницистом». На что Л .Д. Линденбратен ответил: «А я считаю A.M. Уголева идеальным человеком, несмотря на то что он физио­лог!».

7.3. Повреждения черепа и головного мозга

Лучевые исследования у пострадавших проводят по назначению хирур­га, травматолога или невропатолога (нейрохирурга). Основанием для такого назначения являются травма головы, обшемозговые (головная боль, тош­нота, рвота, нарушение сознания) и очаговые неврологические симптомы

(расстройства речи, чувствительности, двигательной сферы и др.). В на­правлении клинициста обязательно должен быть указан предположитель­ный диагноз.

Тяжесть повреждения определяется не столько нарушением целости костей черепа, сколько повреждением головного мозга и его оболочек. В связи с этим в подавляющем большинстве случаев лучевое иссле­дование при острой травме должно заключаться в выполнении КГ. Не­обходимо помнить, что в ряде случаев повреждение кажется легким и на рентгенограммах даже не выявляется нарушение целости костей, но из-за продолжающегося внутричерепного кровотечения состоя­ние больного может значительно ухудшиться в последующие часы и дни.

Обычные рентгенограммы показаны главным образом при вдавлен­ных переломах, когда отломки смещаются в полость черепа. На них можно также определить смещение обызвествленных внутричереп­ных образований, в норме располагающихся срединно (шишковидная железа, серповидный отросток), которое является косвенным при­знаком внутричерепного кровоизлияния. Кроме того, на рентгено­граммах иногда можно выявить небольшие линейные переломы, ус­кользающие от рентгенолога при анализе КТ. Однако повторим еще раз, что основным лучевым методом исследования при травмах головы яв­ляется КТ.

При выполнении лучевого исследования у больных с повреждени­ем черепа и головного мозга рентгенолог должен ответить на три во­проса: 1) имеется ли нарушение целости костей черепа; 2) сопровожда­ется ли перелом внедрением отломков в полость черепа и повреждени­ем глазниц, околоносовых пазух и полости среднего уха; 3) есть ли по­вреждение мозга и его оболочек (отек, кровоизлияние).

Среди повреждений мирного времени преобладают линейные пе­реломы (трещины) костей свода черепа. При этом в подавляющем большинстве случаев они возникают в месте приложения силы (этот факт всегда облегчает выявление трещины). Перелом определяется как резкая, иногда зигзагообразная, местами раздваивающаяся полоска со слегка не­ровными краями (рис. III. 192). В зависимости от характера травмы положе­ние и протяженность трещины очень разнообразны. Они могут затрагивать только одну пластину или обе, переходить на черепной шов, вызывая его расхождение.

Помимо трещин, наблюдаются дырчатые, вдавленные и оскольчатые переломы. При них, как отмечено выше, особенно важно установить степень смещения отломков в полость черепа, что легко осуществить с помощью прицельных снимков. Значительное смещение ос­колков наблюдается при переломах огнестрельного происхождения. При слепых ранениях необходимо определить наличие и точную локализацию инородных тел, в частности установить, в полости черепа или вне ее нахо­дится пуля или осколок.

Переломы основания черепа, как правило, являются продолжением трещины свода. Трещины лобной кости обычно опускаются к лобной пазу­хе, верхней стенке глазницы или решетчатому лабиринту, трещины темен-

Лучевая анатомия сосудов головного мозга

Рмс. Ш.192. Обзорная боковая рентгенограмма черепа и схема к ней. Множест­венные трещины левой теменной и височной костей.

ной и височной костей – в среднюю черепную яму, а трещины затылочной кости – в заднюю черепную яму. При выборе методики рентгенографии учитывают клинические данные: кровотечение из носа, рта, ушей, истече­ние цереброспинальной жидкости из носа или уха, кровоизлияние в облас­ти века или мягких тканей области сосцевидного отростка, нарушение функции определенных черепных нервов. Соответственно клиническим и рентгенографическим признакам врач производит снимки передней, сред­ней или задней черепной ямки.

На компьютерных томограммах зона свежего кровоизлияния имеет по­вышенную плотность, положение, величина и форма ее зависят от источ­ника и локализации кровотечения. Плотность тени гематомы увеличивает­ся в первые 3 дня после травмы и затем постепенно уменьшается в течение 1-2 нед.

Внутримозговая гематома обычно достаточно хорошо отграничена (рис. III. 193), при значительных размерах оттесняет соседние мозговые структуры (такой эффект получил название «масс-эффект»). Вокруг гема­томы может быть зона пониженной плотности {гиподенсивная зона). Ее субстратом служит отечная мозговая ткань. Если кровоизлияние проника­ет в желудочек мозга, то участок повышенной плотности принимает форму соответствующего отдела желудочка. Травма может вызвать набу­хание вещества мозга вследствие отека и гиперемии. В этом случае на КТ отмечается зона повышенной плотности диффузного или очагового ха­рактера. Она наиболее четко вырисовывается через 12-24 ч после по­вреждения.

Лучевая анатомия сосудов головного мозга

Рис. Ш. 193. Компьютерная томограмма головного мозга. Большая внугримозго-вая гематома.

Кровоизлияние может произойти под твердую мозговую оболочку или между нею и костями черепа. Свежие субдуральные и эпидуральные гема­томы тоже образуют на компьютерных томограммах область повышенной и однородной плотности, вытянутой, нередко овальной формы, которая при­лежит к изображению черепных костей.

Одновременно может наблюдаться кровоизлияние в ткань мозга, а при большой субдуральной гематоме – масс-эффект. В последующем плот­ность гематомы уменьшается и становится даже меньше плотности мозго­вого вещества.

КТ позволяет обнаруживать кровоизлияние в околоносовые пазухи или проникновение воздуха из этих пазух в полость черепа – пневмоцефалию. Масс-эффект устанавливают также по смещению срединных структур при одномерном ультразвуковом исследовании.

Читайте также:  Берут ли с сужением сосудов головного мозга

Роль МРТ в обследовании больных с переломами черепа весьма огра­ничена. Основное назначение ее – контроль за состоянием головного мозга в процессе лечения.

Ушибы мозга представляют собой нередкие травматические по­вреждения, проявляющиеся отеком мозга с кровоизлиянием или без него. Иногда при ушибе может образоваться истинная гематома. Повреждения часто бывают множественными, значительная их часть приходится на лоб­ные и височные доли.

При КТ отечная ткань проявляется участком пониженной плотности. Картина отека при МРТ зависит от метода получения изображения: на Т1 -взвешенных томограммах зона отека выглядит гипоинтенсивной, на Т2-взвешенных – гиперинтенсивной. Кровоизлияние в мозг выявляется при КТ или МРТ.

Источник

Кровоснабжение головного мозга и артерии головного мозга

Работа мозга полностью зависит от его непрерывного снабжения кровью, обогащенной кислородом. Контроль доставки крови происходит за счет способности мозга улавливать колебания давления в основных источниках его кровоснабжения – внутренней сонной и позвоночной артериях. Контроль напряжения кислорода в артериальной крови обеспечивает хемочувствительная зона продолговатого мозга, рецепторы которой реагируют на изменение концентрации газов дыхательной смеси во внутренней сонной артерии и спинномозговой жидкости. Регулирующие кровоснабжение мозга механизмы устроены тонко и совершенно, однако в случае повреждения или окклюзии артерий эмболом они становятся неэффективными.

а) Кровоснабжение передних отделов мозга. Кровоснабжение полушарий мозга осуществляют две внутренние сонные артерии и основная (базилярная) артерия.

Внутренние каротидные артерии через крышу пещеристого синуса проникают в субарахноидальное пространство, где отдают три ветви: глазную артерию, заднюю соединительную артерию и переднюю артерию сосудистого сплетения, а затем разделяются на переднюю и среднюю мозговые артерии.

Основная артерия на верхней границе варолиева моста разделяется на две задние мозговые артерии. Артериальный круг головного мозга – виллизиев круг -формируется за счет анастомоза задней мозговой и задней соединительной артерий с обеих сторон и анастомоза двух передних мозговых артерий с помощью передней соединительной артерии.

Кровоснабжение сосудистого сплетения бокового желудочка обеспечивают передняя артерия сосудистого сплетения (ветвь внутренней сонной артерии) и задняя артерия сосудистого сплетения (ветвь задней мозговой артерии).

Артерии, составляющие виллизиев круг, образуют десятки тонких центральных (перфорирующих) ветвей, которые проникают в мозг через переднее продырявленное вещество вблизи перекреста зрительных нервов и через заднее продырявленное вещество позади сосцевидных тел. (Эти обозначения применимы для образований, расположенных на вентральной поверхности мозга, а также для небольших отверстий, образованных при прохождении многочисленных артерий, кровоснабжающих эти области.) Существует несколько классификаций перфорирующих артерий, однако условно их разделяют на короткие и длинные перфорирующие ветви.

Артерии Виллизиева круга, кровоснабжающие головной мозг (А) Мозг и структуры виллизиева круга (вид снизу). Левая височная доля частично удалена (в правой части изображения), чтобы показать сосудистое сплетение, расположенное в нижнем роге бокового желудочка.

(Б) Артерии, образующие виллизиев круг. Продемонстрированы четыре группы центральных ветвей. Таламоперфорирующие артерии относят к заднемедиальной группе, таламоколенчатые артерии – к заднелатеральной группе.

Учебное видео анатомии сосудов Виллизиева круга

Кровоснабжение головного мозга Правое полушарие (вид с медиальной стороны).

Изображены корковые ветви трех мозговых артерий и кровоснабжаемые ими отделы.

Короткие центральные ветви берут начало от всех артерий виллизиева круга, а также от двух артерий сосудистых сплетений и обеспечивают кровоснабжение зрительного нерва, перекреста зрительных нервов, зрительного проводящего пути и гипоталамуса. Длинные центральные ветви начинаются от трех мозговых артерий и кровоснабжают таламус, полосатое тело и внутреннюю капсулу. К ним относят также артериальные ветви полосатого тела (чечевицеобразно-полосатые артерии), отходящие от передней и средней мозговых артерий.

1. Передняя мозговая артерия. Передняя мозговая артерия проходит на медиальную поверхность полушарий головного мозга над перекрестом зрительных нервов. Затем она огибает колено мозолистого тела, что позволяет с легкостью идентифицировать его при каротидной ангиографии (см. далее). Вблизи передней соединительной артерии передняя мозговая артерия отдает ветвь, образуя медиальную артерию полосатого тела, также известную как возвратная артерия Гюбнера. Функция этой артерии – кровоснабжение внутренней капсулы и головки полосатого тела.

Корковые ветви передней мозговой артерии кровоснабжают медиальную поверхность полушарий мозга на уровне теменно-затылочного борозды. Ветви этой артерии пересекаются в области лобной и латеральной поверхностей полушарий мозга.

Ветви передней мозговой артерии

2. Средняя мозговая артерия. Средняя мозговая артерия – наиболее крупная из ветвей внутренней сонной артерии, принимающая 60-80 % ее кровотока. Отходя от внутренней сонной артерии, средняя мозговая артерия сразу же отдает центральные ветви, а затем в глубине латеральной борозды направляется к поверхности островка мозга, где разветвляется на верхнюю и нижнюю части. Верхние ветви обеспечивают кровоснабжение лобной и теменной долей, а нижние – теменной и височной долей, а также средней части зрительной лучистости. Названия ветвей средней мозговой артерии и кровоснабжаемых ими отделов указаны в таблице ниже. Средняя мозговая артерия кровоснабжает 2/3 латеральной поверхности мозга.

В состав центральных ветвей средней мозговой артерии входят латеральные артерии полосатого тела, кровоснабжающие полосатое тело, внутреннюю капсулу и таламус. Окклюзия одной из латеральных артерий полосатого тела приводит к развитию классических проявлений инсульта («чистой» моторной гемиплегии). В этом случае происходит повреждение корково-спинномозгового проводящего пути в задней ножке внутренней капсулы, вызывающее контралатеральную гемиплегию (паралич мышц верхней и нижней конечностей, а также нижней части лица на стороне, противоположной поражению). Обратите внимание: полная информация о кровоснабжении внутренней капсулы представлена в отдельной статье на сайте.

Ветви средней мозговой артерии

3. Задняя мозговая артерия. Две задние мозговые артерии – конечные ветви основной артерии. Однако в эмбриональном периоде задние мозговые артерии отходят от внутренней сонной артерии, в связи с чем у 25 % людей внутренняя сонная артерия в виде крупной задней соединительной артерии остается основным источником кровоснабжения мозга с одной или обеих сторон.

Недалеко от места отхождения от основной артерии задняя мозговая артерия разделяется и образует ветви, направляющиеся к среднему мозгу, заднюю артерию сосудистого сплетения, кровоснабжающую сосудистое сплетение бокового желудочка, а также центральные ветви, проходящие через заднее продырявленное вещество. Затем задняя мозговая артерия огибает средний мозг в сопровождении зрительного проводящего пути и обеспечивает снабжение кровью валика мозолистого тела, а также затылочной и теменной долей. Названия корковых ветвей и кровоснабжаемых ими отделов указаны в таблице ниже.

Читайте также:  Санатории белоруссии для лечения сосудов головного мозга

Центральные перфорирующие ветви задней мозговой артерии – таламоперфорирующие и таламо-коленчатые артерии – обеспечивают кровоснабжение таламуса, субталамического ядра и зрительной лучистости.

Обратите внимание: полная информация о центральных ветвях задней мозговой артерии представлена в таблице ниже.

Ветви задней мозговой артерииКровоснабжение головного мозга Правое полушарие (вид сбоку). Показаны корковые ветви и отделы кровоснабжения трех мозговых артерий. Кровоснабжение головного мозга Схематичное изображение отделов кровоснабжения средней мозговой артерии, задней мозговой артерии и передней артерии сосудистого сплетения.

Передняя артерия сосудистого сплетения начинается от внутренней сонной артерии. Кровоснабжение головного мозга Полушария мозга (вид снизу). Показаны корковые ветви и отделы кровоснабжения трех мозговых артерий.

ПМА, СМА, ЗМА – передняя, средняя и задняя мозговые артерии соответственно. ВСА – внутренняя сонная артерия.

4. Нейроангиография. Артерии и вены мозга можно визуализировать под общим обезболиванием при серийном ангиографическом исследовании (с промежутками 2 с), следующим за быстрым (болюсным) введением рентгеноконтрастного вещества во внутреннюю сонную или позвоночную артерию. Контрастное вещество распространяется по артериям, капиллярам и венам мозга в течение приблизительно 10 секунд Во время артериальной фазы каротидной или вертебральной ангиографии можно получить соответствующие ангиограммы. Улучшить визуализацию сосудов в артериальную или венозную фазу исследования позволяет субтракция («удаление») изображения черепа в результате наложения его позитивных и негативных изображений.

Относительно недавно стали применять трехмерную ангиографию, при которой исследование проводят из двух незначительно различающихся проекций. Кроме того, изображения внутричерепных и внечерепных сосудов можно получить при помощи магнитно-резонансной ангиографии (MPA). МРА в качестве неинвазивного метода диагностики применяется достаточно широко, в том числе в качестве альтернативы традиционной рентгеноконтрастной ангиографии.

Артериальные фазы каротидных ангиограмм показаны на рисунках ниже.

На отдельном рисунке ниже показана паренхиматозная фаза ангиографии: контрастное вещество распространяется в просвете тонких концевых ветвей передней и средней мозговых артерий, кровоснабжающих паренхиму мозга (кору и подлежащее белое вещество) и частично анастомозирующих на поверхности полушарий.

Ангиография головного мозга Артериальная фаза каротидной ангиографии (латеральная проекция).

Введенное во внутреннюю сонную артерию (ВСА) контрастное вещество проходит через переднюю и среднюю мозговые артерии (ПМА и СМА соответственно).

Область основания черепа схематически заштрихована. Ангиография головного мозга Артериальная фаза каротидной ангиографии справа (переднезадняя проекция).

Обратите внимание на перфузию части левой передней мозговой артерии (ПМА) за счет передней соединительной артерии.

ВСА – внутренняя сонная артерия. СМА – средняя мозговая артерия. Ангиография головного мозга (А) Фрагмент каротидной ангиограммы (переднезадняя проекция).

Показана аневризма средней мозговой артерии. (Б) Фрагмент трехмерного изображения той же области.

ПМА, СМА – передняя и средняя мозговые артерии соответственно. ВСА – внутренняя сонная артерия. Ангиография головного мозга Паренхиматозная фаза каротидной ангиографии (переднезадняя проекция).

ПМА, СМА – передняя и средняя мозговые артерии соответственно. ВСА – внутренняя сонная артерия.

б) Кровоснабжение задних отделов мозга. Кровоснабжение ствола мозга и мозжечка осуществляют позвоночные и основные артерии, а также их ветви.

Две позвоночные артерии отходят от подключичных артерий и поднимаются вертикально через поперечные отростки шести верхних шейных позвонков, а затем через большое затылочное отверстие проникают в череп. В полости черепа правая и левая позвоночные артерии сливаются в области нижней границы варолиева моста, образуя основную артерию. Основная артерия направляется вверх в базилярной части варолиева моста и у его переднего края делится на две задние мозговые артерии.

Ветви первого порядка, отходящие от позвоночных и основной артерий, обеспечивают кровоснабжение ствола мозга.

1. Ветви позвоночной артерии. Задняя нижняя мозжечковая артерия кровоснабжает боковые поверхности продолговатого мозга, а затем формирует ветви, идущие к мозжечку. Передняя и задняя спинномозговые артерии обеспечивают кровоснабжение вентральной и дорсальной частей продолговатого мозга соответственно, а затем направляются вниз через большое затылочное отверстие.

2. Ветви основной артерии. Передняя нижняя мозжечковая и верхняя мозжечковые артерии кровоснабжают боковые поверхности варолиева моста, а затем формирует ветви, идущие к мозжечку. Передняя нижняя мозжечковая артерия отдает ветвь, кровоснабжающую внутреннее ухо,- артерию лабиринта.

Кровоснабжение медиальной части варолиева моста обеспечивают приблизительно 12 артерий варолиева моста.

Кровоснабжение среднего мозга обеспечивают задние мозговые и задние соединительные артерии, посредством которых задние мозговые артерии образуют анастомоз с внутренней сонной артерией.

Кровоснабжение головного мозга Кровоснабжение задних отделов мозга. Ангиография головного мозга Вертебральная ангиография (латеральная проекция).

Контрастное вещество введено в левую позвоночную артерию.

Артерии, кровоснабжающие верхнюю часть мозжечка, в некоторых отделах не видны за счет лежащих выше задних теменных ветвей задней мозговой артерии.

ЗМА – задняя мозговая артерия. ЗНМА-задняя нижняя мозжечковая артерия. Ангиография головного мозга Вертебральная ангиография (вид сверху и спереди).

Показаны сосуды вертебробазилярного бассейна. Обратите внимание на крупную аневризму основной артерии в области бифуркации.

Клинически эта ситуация проявлялась постоянными головными болями.

ПНМА – передняя нижняя мозжечковая артерия. ЗИМА – задняя нижняя мозжечковая артерия.

в) Резюме. Артерии. Передняя соединительная артерия, две передние мозговые артерии, внутренняя сонная артерия, две задние соединительные артерии и две задние мозговые артерии образуют виллизиев круг.

От передней мозговой артерии отходит медиальная артерия полосатого тела (возвратная артерия Гюбнера), которая направляется к передненижней части внутренней капсулы, а затем огибает мозолистое тело и обеспечивает кровоснабжение медиальной поверхности полушарий мозга на уровне теменно-затылочной борозды, перекрещиваясь на латеральной поверхности.

Средняя мозговая артерия проходит в латеральной борозде и обеспечивает кровоснабжение 2/3 латеральной поверхности полушарий мозга. В состав центральных ветвей средней мозговой артерии входит латеральная артерия полосатого тела, кровоснабжающая верхний участок внутренней капсулы

Задняя мозговая артерия начинается от основной артерии и обеспечивает кровоснабжение валика мозолистого тела, а также затылочных и височных отделов коры полушарий.

Позвоночные артерии проходят через большое затылочное отверстие и обеспечивают кровоснабжение спинного мозга, задненижней части мозжечка, продолговатого мозга. Затем позвоночные артерии объединяются и формируют основную артерию, которая кровоснабжает передненижние и верхние отделы мозжечка, варолиев мост, внутреннее ухо. После этого основная артерия, разделяясь, образует задние мозговые артерии.

– Также рекомендуем “Вены и венозный отток от головного мозга”

Редактор: Искандер Милевски. Дата публикации: 10.11.2018

Источник