Модуль упругости кровеносных сосудов
3. Свойства кровеносных сосудов.
Кровеносные сосуды по своим свойствам и функциям подразделяются на четыре типа: артерии эластичного типа, артерии мышечного типа, капилляры и вены.
l Артерии эластичного типа можно назвать аккумуляторами давления крови: благодаря им поддерживается непрерывный ток крови во время диастолы, когда сердце отдыхает. Стенки таких сосудов содержат значительное количество эластических волокон, благодаря чему в ходе функционирования артерий этого типа их радиус способен при упругих деформациях увеличиваться в 1,1 раза (на 10%), что соответствует увеличению площади сечения на 20%.
В ходе нарастания давления крови в процессе сокращения желудочков, информация об этом передается вдоль системы сосудов со скоростью звука (это порядка 1000 м/с). Вследствие этого все артерии эластического типа слегка увеличиваются в диаметре; их стенки слегка напрягаются (закон Гука); создается некоторый запас крови повышенного давления.
Помимо этого, начиная с аорты, вдоль всей системы артерий начинает распространяться пульсовая волна, расходясь по разветвлениям и постепенно затухая. В возникновении и распространении этой волны, помимо эластичности сосудов, играет роль инерционность жидкости. Благодаря инерционности, для жидкости легче образовать вздутие сосуда (благо он это позволяет), чем устремляться вдоль сосуда. Вздутие развивается до той поры, пока возрастающие силы упругости не уравновесят внутренние силы статического давления. Далее – кровь выдавливается из зоны вздутия упругими силами стенок, с тем, чтобы образовать вздутие в соседних сечениях; и т.д.
Упругие и инерционные свойства системы «кровь – аорта» определяют скорость распространения пульсовой волны:
(8)
Здесь Е – модуль упругости стенки; r – плотность крови; r – внутренний радиус сосуда; b – толщина его стенки.
С возрастом, по мере уменьшения эластичности сосудов, растет модуль упругости Е, что отслеживается ростом скорости распространения пульсовой волны.
Измерить скорость пульсовой волны можно следующим образом. Можно установить два датчика пульсовых колебаний на некотором расстоянии Dl друг от друга, и записать две кривые артериального пульса. Такие записи называются санмограммами. По двум таким записям легко определяется временной сдвиг Dt одной из них по отношению к другой. Скорость пульсовой волны:
Зная Vп, можно с помощью формулы (8) вычислить модуль упругости Е как показатель состояния сосудистой стенки. А можно обойтись и без вычислений, сравнивая измеренные значения Vп со значениями, характерными для нормы.
Наряду с эластичными волокнами, стенки сосудов данного типа имеют значительное количество коллагеновых волокон, природное предназначение которых – обеспечение прочности тканей. Однако прочностные способности этих волокон способны проявиться лишь при значительных деформациях стенок сосудов. Это объясняется рыхлой укладкой коллагеновых волокон. Они как бы спутаны, и начинают проявлять прочность только когда распрямляются при больших деформациях стенок.
Наличие прочных нитей коллагеновых волокон обеспечивает возможность работы сосудов в условиях очень больших нагрузок на систему кровообращения, вплоть до десятикратного роста артериального давления.
l Артерии мышечного типа, меняя тонус, меняют распределение давления крови по органам и тканям. В системе кровообращения нет кранов и задвижек, но есть артерии мышечного типа – артериолы. Их численность – несколько сот тысяч; суммарная площадь сосудистого русла получается весьма внушительной, а потому перепад давлений на системе артериол достаточно велик, несмотря на параллельную работу их ветвей. Так, если давление в аорте во время систолы достигает 115-130 мм рт.ст., то у начала артериол оно составляет 70-80 мм, а у начала капилляров – 20-40 мм рт.ст. Природная логика здесь примерно такова: артериола должна иметь заметное гидравлическое сопротивление, и тогда она может своим мышечным тонусом менять его в обе стороны: как в сторону понижения, так и в сторону повышения. Будь у нее очень малое сопротивление, она могла бы работать, регулируя систему только на повышение давления, что было бы гораздо менее эффективно.
Изменения тонуса в отдельных звеньях системы артериол обеспечивают повышенный кровоток в тех органах, которые в данный момент в этом нуждаются, как в связи с физическими нагрузками, так и в ходе регулирования теплообмена организма с окружающей средой.
Помимо изложенного, система артериол передает пульсовую волну, которая окончательно затухает лишь на входе в капилляры.
Примеры системных нарушений в работе этого участка кровеносной системы – гипертония и гипотония.
l Капилляры – та часть системы кровообращения, ради которой эта система существует.
Гидравлическое сопротивление всей системы капилляров невелико: если на входе в капилляры давление крови 20-40 мм рт.ст., то на выходе – 8-15 мм рт.ст., и это несмотря на впечатляющую суммарную их протяженность. Объяснение тому – очень малая скорость движения крови в этих сосудах: порядка 0,5 мм/с.
Система капилляров – та часть кровеносной системы, которая выходит из строя при декомпрессии. Имеется в виду ситуация, когда резко уменьшается давление воздуха, который окружает человека (и которым он дышит). Например, если водолаз, в нарушение инструкций, будет быстро всплывать с больших глубин на поверхность, то давление воздуха в его скафандре будет автоматически уменьшаться вслед за уменьшением внешнего гидростатического давления, и при этом воздух, растворившийся в его крови при больших давлениях в скафандре, начинает выделяться в виде микроскопических пузырьков как в самих капиллярах, так и в потоке крови, поступающей к ним. Эти пузырьки способны закупорить капилляры.
Дело в том, что в связи с явлением поверхностного натяжения под изогнутой поверхностью жидкости возникает избыточное давление (давление Лапласа), величина которого, где s – коэффициент поверхностного натяжения; r – радиус пузырька или капилляра, в котором он обосновался.
При радиусе капилляра r = 5 мкм = 5×10-6м и при s = 0,05 Н/м давление в пузырьке: p = 20 кПа = 150 мм рт.ст., т.е. превосходит «рабочее» давление крови в капиллярах и вполне годится в качестве пробки для них. Такой пузырек, вместе с его внутренним давлением, будет постепенно вытолкнут из капилляра, но навредить он успеет, поскольку ток в капилляре будет существенно замедлен. А дальше что? Спустя небольшое время значительная часть этих пузырьков вернется, пройдя сердце, в систему капилляров на повторное вредительство.
Радикальным выходом из подобных ситуаций, приводящих к кессонной болезни, является помещение пострадавших в барокамеры с повышенным давлением воздуха, выдерживание их в камерах в течение долгих часов, пока воздух из пузырьков опять растворится в крови, затем – медленное поэтапное снижение давления в барокамере до нормального атмосферного давления. Чем раньше начинается такая восстановительная процедура, тем меньше остаточные явления.
Чтобы оказаться в обозначенном круге проблем, не обязательно быть водолазом или космонавтом. В медицинской практике – камеры гипербарической оксигенации: пациента помещают в герметичную камеру, в которой воздух заменен кислородом высокого давления. Это предпринимается для эффективного насыщения крови кислородом в случаях, когда обычное легочное дыхание плохо справляется с этой задачей.
Вывод пациента из барокамеры должен быть растянут во времени, с медленным снижением избыточного давления, во избежание кессонной болезни.
l Вены – сложная разветвленная сеть сосудов, замыкающая выход капилляров с предсердиями. Эта система работает в условиях низкого давления; оно достигает нулевой отметки, и даже, как уже говорилось, может быть отрицательным. В этих условиях, в правом предсердии возникает еще более низкое давление, чтобы всасывать кровь, если она поступает слабо.
Если же организм работает в режиме повышенных физических нагрузок, то давление на входе в предсердия – повышенное, и имеет место хорошая заполняемость предсердий и желудочков. Это означает, что мышечные волокна миокарда растянуты значительно. Для сердца это является указанием на то, что от него требуется сократительная деятельность повышенной мощности. В этом проявляется закон Старлинга: сила сердечного сокращения прямо пропорциональна исходной длине миокардиальных волокон перед началом систолы. Таким путем, не дожидаясь команд из «центра» – ЦНС, сердце автоматически регулирует свою деятельность. Способность сердца автономно выполнять сократительную деятельность, даже находясь вне организма, поражала еще древних медиков.
Разумеется, сказанное не означает, что сердце работает совершенно независимо от центральной нервной системы. Хорошо известно, что эмоциональные перегрузки способны оказывать сильнейшее влияние, как положительное, так и отрицательное, на работу сердца и всей сердечно-сосудистой системы.
l Автоматическое регулирование собственных параметров системой кровообращения просто обязано быть под контролем центральной нервной системы. Без этого система может «далеко зайти».
В самом деле, легко представима такая ситуация: работая по закону Старлинга, сердце начинает, в ответ на хорошую заполненность предсердий, совершать более энергичные сокращения; это приводит к еще более хорошему заполнению предсердий, сердце начинает работать еще энергичнее, и т.д., – сердце «пошло в разнос».
Нечто подобное можно представить себе и в работе системы артериол: давление крови повысилось – артериолы зажались – сердце вынуждено повысить давление еще больше – артериолы зажались еще сильнее, и т.д.
Следовательно, центральная нервная система по отношению к системе кровообращения должна тонко проводить принцип: «ты саморегулируйся, но знай меру». Это очень деликатная и тонкая работа ведется нервной системой непрерывно, в том числе и тогда, когда мы спим. Одно из двух: либо ЦНС справляется с этой работой, либо – нет, и тогда встают задачи, самые сложные для медика – устранение неполадок в работе ЦНС.
l Памятник – пародия на дурную систему автоматического регулирования установлен в Стокгольме перед музеем техники: на столбе висит фонарь; его включение и выключение осуществляет фотоэлемент. А дальше так: стемнело – фотоэлемент включил фонарь – стало светло – фотоэлемент выключил фонарь – стало темно – и т.д.
l В отношении венозной части системы кровообращения, работающей в условиях низкого давления, а что гораздо важнее – низких перепадов давления (см. закон Пуазейля), природа распорядилась не полагаться полностью на эти перепады. Кровоток в этой части системы кровообращения поддерживается также через механику легочных сокращений, движений диафрагмы; движение крови в венах рук и ног стимулируется сократительной деятельностью мышц. Чтобы такие «подкачивающие насосы» работали эффективно, вены имеют систему клапанов, пропускающих кровь только в сторону предсердий.
Следовательно, лежание на диване не является оптимальной жизненной стратегией в деле поддержания работы сердечно-сосудистой системы на должном уровне. Двигательная активность организма предусмотрена природой как необходимое условие четкой работы этой системы.
l Венозные сосуды имеют тонкие стенки и сравнительно слабые мышечные волокна. Тем не менее, в венах возникает и по ним распространяется своя пульсовая волна. Ее предназначение – сгладить колебания давления крови, погасить эти колебания. Возникновение этих пульсаций давления связано с гидравлическим ударом, а точнее –с его предотвращением. Дело в том, что перед каждым очередным срабатыванием сердца вход в предсердие резко закрывается, и кровотоку в сторону предсердий становится некуда девать свою кинетическую энергию. Вместо опасных пиков давления возникают упругие растяжения стенок вен на входе в предсердия, а дальше все идет, как в артериальной пульсовой волне, только в обратном направлении – против тока крови.
Таким образом, в сторону капилляров идут две пульсовые волны, затухая окончательно на подступах к ним: кровеносная система бережно создает «режим наибольшего благоприятствования» в работе своего основного участка.
В соответствии с формулой (8), скорость венозной пульсовой волны меньше, чем артериальной. Она может быть измерена по записям венного пульса. Такие записи называются флебограммами.
Источник
При сокращении сердца крупные кровеносные сосуды на некоторое время накапливают кровь. Кинетическая энергия выбрасываемой из сердца крови частично переходит в потенциальную энергию упругой деформации стенок аорты и крупных артерий. При диастоле проходит обратный процесс -потенциальная энергия деформированных артерий трансформируется в кинетическую энергию крови. Эластичные кровеносные сосуды как бы «дорабатывают» усилие сердца. Сердце является источником возбуждения колебаний давления на стенки кровеносных сосудов. Эти колебания распространяются по сосудистой системе, и возникающую при этом волну давления называют пульсовой волной.
Пульсовой волнойназывают распространяющуюся волну повышенного давления по аорте и артериям, вызванную выбросом крови из левого желудочка в период систолы.
Пульсовая волна является затухающей волной. Происходит также сдвиг колебаний по фазе, который увеличивается с возрастанием расстояния от сердца до рассматриваемого участка сосудистой системы.
Пульсовая волна может быть представлена как сумма простых гармонических волн. Гармонический анализ пульсовых колебаний кровотока является одним из важных методов его изучения. Первая гармоническая составляющая пульсовой волны давления может быть записана в следующем виде:
Р1 = Ро е- ax sin w(t – x/v), (2)
где Ро – амплитуда пульсовых колебаний, t – время, х – расстояние от сердца до данной точки, w – циклическая (круговая) частота сердечных сокращений, v – скорость распространения пульсовой волны, a – коэффициент затухания, определяемый характеристиками сосудистой системы.
Эластичность сосуда уменьшается с увеличением расстояния от сердца до периферии. Это обусловлено изменением относительного содержания эластина и коллагена в сосудистой ткани. С удалением от сердца увеличивается доля гладких мышечных волокон, которые в атрериолах являются уже основной составляющей сосудистой ткани.
Скорость распространения пульсовой волны в крупных кровеносных сосудах определяется по формуле Моенса-Кортевега:
(3)
где Е – модуль упругости сосуда, h – толщина его стенки, d – диаметр сосуда. r – плотность крови.
Из формулы (27) следует: с увеличением жесткости сосуда и увеличением толщины его стенки скорость пульсовой волны возрастает.
В аорте она равна 4-6 м/с, в артериях мышечного типа – 8-12 м/с. Из приведенных данных следует, что скорость распространения пульсовой волны намного больше линейной скорости кровотока (скорость кровотока не превышает 0,5 м/с в покое).
Поскольку с возрастом эластичность сосудов снижается (модуль упругости растет), то скорость пульсовой волны возрастает в 2-3 раза. Она растет и с увеличением давления. При повышенном давлении сосуд несколько растягивается, становится более «напряженным», и для его дальнейшего растяжения требуется большее усилие.
Форма пульсовых колебаний и их характеристики являются отражением работы сердца и состояния сосудистой системы.
Наряду с пульсовой волной в кровеносной системе распространяются и звуковые волны, скорость которых велика. Таким образом, в системе кровеносных сосудов выделяют три основных волновых процесса:
1. перемещение частиц крови (0,5 м/с),
2. распространение пульсовой волны (10 м/с),
3. распространение звуковых волн (1500 м/с).
Вопрос 3. 34минут.
Источник