Молекул газа в сосуде

3.1. Распределение молекул между двумя половинками сосуда.

Применим теперь элементы теории вероятности для описания одноатомного идеального газа, заключенного в сосуд объемом . Рассмотрим сначала распределение молекул между двумя половинками сосуда.

Введем следующую терминологию:

Макросостояние – состояние, определяемое только известным количеством частиц в каждой из половин сосуда (без уточнения их номеров и, полагая частицы неразличимыми);

Микросостояние – состояние, определяемое нахождением конкретных (по номерам) частиц в каждой из половин сосуда (известно, частицы с какими номерами находятся в левой и правой половинах сосуда).

Статистический вес (статвес)– это число равновероятных микросостояний, посредством которых реализуется данное макросостояние.

1). Если имеется всего одна молекула, то вероятность найти ее в любой половине сосуда равна

(4.1).

2). Возьмем две молекулы, пронумеруем их и будем размещать их всеми возможными способами двум по половинкам сосуда. Очевидно, что всего возможны 4 (четыре) способа размещения:

Вероятность каждой из молекул оказаться в какой-либо половине сосуда равна . Поскольку положения молекул никак не зависят друг от друга, т.е. это независимые события, то, вероятность определенного размещения двух молекул сразу равна .

3). Пусть мы теперь имеем 4 молекулы. Пронумеруем эти частицы: 1, 2, 3, 4, считая, что это возможно сделать.

Итак, каждое “номерное” размещение частиц по половинкам сосуда – это микросостояние. Понятно, что

вероятность каждого микросостояния одинакова и в случае 4-х частиц равна: .

Построим таблицу:

 
 
N
Макросостояние
 
(число частиц в
половинках сосуда)
 
левая правая
Микросостояние
 
(частицы с разными номерами в половинках
сосуда)
левая правая
Статистический вес
 
(число микросостояний,
соответствующих
определенному
макросостоянию)
 
Вероятность макросостояния
0 4 – 1,2,3,4 1/16
 
1 3
1 2,3,4
2 1,3,4
3 1,2,4
4 1,2,3
 

 
4 ×1/16 = 1/4
 
 
2 2
1,2 3,4
1,3 2,4
1,4 2,3
2,3 1,4
2,4 1,3
3,4 1,2
 
 

 
 
6 ×1/16 = 3/8
 
3 1
1,2,3 4
1,2,4 3
1,3,4 2
2,3,4 1
 

 
1/4
4 0 1,2,3,4 – 1/16

Полная вероятность макросостояний равна, как и следует ожидать, единице:

.

Из данных таблицы видно, что наиболее вероятное макросостояние – это симметричное распределение молекул.

4). Рассмотрим, наконец, общий случай, когда в сосуде находится молекул.

Будем искать вероятность реализации макросостояния, при котором находятся: слева – частиц, справа– частиц. Выберем одно из микросостояний: слева – частицы с номерами ; справа – с номерами . Переставляя частицы местами, учтем, что макросостояние не изменяется (число частиц остается постоянным в каждой половинке сосуда), а микросостояние изменяется, если переставляются частицы из левой половины в правую, и не изменяется, если перестановки происходят только внутри каждой половины.

Сосчитаем статвес в рассматриваемого макросостояния. Полное число возможных перестановок в системе, содержащей частиц, равно . Чтобы получить число разных микросостояний в данном макросостоянии, исключим из них число перестановок внутри каждой половины, т.е., соответственно, и перестановок. Получаем, что статистический вес выбранного макросостояния равен числу сочетаний из по :

(3.2)

Очевидно, что вероятность каждого микросостояния равна

(3.3)

Тогда, вероятность рассматриваемого макросостояния ( молекул слева, а молекул справа) есть

. (3.4)

Из полученного выражения следует, что наиболее вероятным является макросостояние, соответствующее максимальному статистическому весу, который достигается при .

Пример: Пусть в сосуде находятся молекулы. Вероятность того, что все молекулы соберутся в одной половине сосуда, легко вычисляется:

статвес этого макросостояния и ,

т.е. вероятность такого события крайне мала уже при молекулах.

3.2. Распределение молекул в случае произвольных объемов.

Пусть в объеме находится молекул. Выделим в объеме меньший объем . Будем интересоваться макросостоянием, при котором в объеме находится частиц, а в остальной части объема содержится молекул. Вероятность того, что в объеме находится одна молекула находится равна отношению . Вероятность, что объем содержит две частицы: .

Если объем содержит частиц, то вероятность такого события – .

В то же время остальные молекул должны попасть в объем , вероятность чего равна

Т. о., вероятность реализации интересующего нас “микросостояния” (это условное микросостояние, т.к. клеточки пространства не одинаковы!):

(3.5)

Число способов такого распределения молекул газа в сосуде – это число соответствующих микросостояний, или статистический вес тот же, как в случае деления сосуда на равные половинки:

Итак, полная вероятность данного макросостояния записывается:

(3.6)

Итак, вероятность того, что в объеме будет обнаружено частиц из , определяется формулой (3.6).

Удобно ввести обозначения: , при этом .

Полученное распределение вероятностей называется биномиальным распределением:

. (3.7)

Биномиальное распределение (распределение Бернулли) – распределение вероятностей числа появлений некоторого события при повторных независимых испытания если вероятность появления этого события равна , .

Название распределения произошло от алгебраического бинома Ньютона:

. (3.8)

3.3. Свойства биномиального распределения.

1). Нормировка

Поскольку , то

, (3.9)

т.е. полная вероятность – вероятность обнаружения в малом объеме какого-либо числа частиц (от нуля до включительно) – нормирована на единицу.

2). Максимум вероятности.

Сразу же возникает резонный вопрос – какое из всех возможных состояний системы (макросостояний) будет реализовываться с максимальной вероятностью? Ясно, что вероятность состояния с очень малыми или при фиксированных и очень мала, т.к. при этом

или .

Т.е. максимум вероятности должен находиться при некоторых промежуточных значениях .

Вычисление максимума вероятности биномиального распределения.

Пусть нас интересуют достаточно большие и , такие что переход от вероятности к вероятности осуществляется непрерывным образом и – бесконечно малая величина. Чтобы найти максимум вероятности, вычислим разность вероятностей двух соседних состояний (при сделанных допущениях проведенная операция равносильна вычислению производной ) и приравняем ее нулю,:

Читайте также:  Фитнес для укрепления сосудов

(3.10)

Из равенства нулю выражения в скобках имеем

,

.

Т.к. и , получаем что

. (3.11)

Вспомним, что при ( , см. пункт 3.1), максимальная вероятность достигается тогда, когда максимален статвес , т.е. при равномерном распределении ( ) молекул газа по половинкам сосуда.

В общем случае, когда , как показывает расчет, максимум вероятности достигается при .

Из полученного результата вытекает исключительно важное следствие. Поскольку – концентрация молекул в объеме, то наиболее вероятным является состояние системы, когда число молекул в объеме равно , т.е. когда осуществляется равномерное заполнение (или распределение) молекулами всего объема сосуда.

Схематически картина распределения вероятности при достаточно больших значениях числах частиц и выглядит как показано на рисунке (дискретные точки соединены сплошной линией): в виде острого в пика окрестности c очень маленькой шириной . Условие нормировки может быть записано как

(3.12)

Если за газом наблюдать достаточно большое время, то окажется, что более вероятные распределения молекул возникают чаще, чем менее вероятные. Поэтому с течением времени газ именно и переходит в наиболее вероятные состояния, причем, достигнув наиболее вероятного состояния, газ в нем практически всегда и остается.

Такое состояние называется стационарным или равновесным.

Существенно, что равновесное состояние газа не зависит от предыстории (или начального состояния), т.е. от “пути”, которым газ шел к равновесию. Независимость от предыстории и постоянство во времени свойств газа в равновесии имеют своим следствием то, что равновесный газ можно описать небольшим числом макроскопических величин, характеризующих газ в целом (для идеального газа – ).

Определение: равновесным состоянием системы является ее наиболее вероятное состояние.

Итак, вероятность того, что число частиц в объеме будет отклоняться даже незначительно от ничтожна и быстро убывает с величиной этого отклонения. Но, тем не менее, число молекул в не всегда строго равно , а колеблется около этой величины. Отклонения числа частиц в объеме от наиболее вероятного значения – это флуктуации.

Приложение. Вычисление максимума вероятности биномиального распределения (традиционный способ).

.

Надо решить уравнение . Будем решать это уравнение для случая, когда и малы, т.е. , но при этом объем не слишком мал, так чтобы не было ничтожно мало. В этом случае максимум вероятности биноминального распределения достигается при достаточно больших и можно воспользоваться формулой Стирлинга для факториалов: .

Примечание. Формула Стирлинга получается следующим образом.

Возьмем логарифм от :

, где Dn = 1.

При больших можно считать . Тогда можно проинтегрировать полученное выражение

.

Теперь потенцируем и получаем формулу Стирлинга:

.

Используем полученное выражение:

Проводя преобразования, мы воспользовались тем, что велико (причем ) и известным пределом

.

Тогда имеем

.

Возьмем производную и приравняем её нулю , при этом вспоминая, что

.

Получаем

,

и тогда

.

Итак, развивая статистический (вероятностный) подход, мы нашли закон распределения частиц (молекул) по некоторому произвольно выбранному объему, предполагая, что в интересующем нас объеме находится газ невзаимодействующих частиц.

Среднее число частиц в произвольном объеме.

Вычислим теперь, используя распределение Бернулли, среднее число частиц в объеме по правилу, определяемому выражением (2.16)

, (3.13)

где .

Т.к. сумма, входящая в (3.13), согласно условию нормировки, равна единице, то

. (3.14)

Заменяя в (3.6) на , можем записать

. (3.15)

Сравнивая (3.11) и (3.14) сделаем ещё один важный вывод, вытекающий из статистического рассмотрения макроскопических систем. Из полученных выражений вытекает, что в состоянии равновесия наиболее вероятным числом молекул в некотором произвольно выбранном объеме является их среднее значение, что соответствует равномерному заполнению сосуда.

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Тестирование

Урок 15. Лекция 15. Идеальный газ

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма. Плазма — частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Читайте также:  В каком сосуде содержится больше атомов

Модель идеального газа. Связь между давлением и средней кинетической энергией.

Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

Идеальный газэто газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V, давление p и температура T.

Объем газа обозначается V. Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м 3 .

Давлениефизическая величина, равная отношению силы F, действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента.

До настоящего времени употребляются внесистемные единицы давления:

техническая атмосфера 1 ат = 9,81-104 Па;

физическая атмосфера 1 атм = 1,013-105 Па;

миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

1 атм = = 760 мм рт. ст. = 1013 гПа.

Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

Используя модель идеального газа, можно вычислить давление газа на стенку сосуда.

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной.

Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

  1. открытый – для измерения небольших давлений выше атмосферного
  2. закрытый — для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Металлический манометр – для измерения больших давлений.

Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Основное уравнение молекулярно-кинетической теории идеального газа.

Основное уравнение МКТ: давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

m — масса одной молекулы газа;

n = N/V – число молекул в единице объема, или концентрация молекул;

v 2 — средняя квадратичная скорость движения молекул.

Так как средняя кинетическая энергия поступательного движения молекул E = m*v 2 /2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m· v 2 )/2 = 2/3·E·n

Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

Так как m·n = m·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v 2

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом.

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим

или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона.

Читайте также:  Плохая эластичность сосудов симптомы

Уравнение Клайперона можно записать в другой форме.

Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

Ее численное значение в СИ R = 8,31 Дж/моль·К

называется уравнением состояния идеального газа.

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV=RT для нагретого газа: p ( V + ΔV ) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Источник

МКТ (страница 2)

На диаграмме зависимости давления (p) от объёма (V) для некоторой массы идеального газа две изотермы пересекаются двумя изохорами в точках 1, 2, 3 и 4 (см. рисунок). Найти отношение давлений (p_3/p_1) в точках 3 и 1, если отношение температур в этих точках (T_3/T_1 = beta) . Давления газа в точках 2 и 4 равны.

Запишем уравнения изотерм (Закон Бойля–Мариотта) [p_4V_4=p_3V_3 hspacep_1V_1=p_2V_2] Преобразуем с учетом, что на графике есть изотермы и (p_2=p_4) [p_1V_1=p_2V_3 hspacep_2V_1=p_3V_3 Rightarrow p_2=dfrac=dfracRightarrow dfrac=left(dfracright)^2quad (1)] Отношение температур, можно выразить через уравнение Клапейрона–Менделеева [pV=nu R T Rightarrow T =dfracRightarrowdfrac=dfracquad (2)] Объединим (1) и (2) [left(dfracright)^2dfrac=beta Rightarrowdfrac=beta Rightarrow dfrac=dfrac] Теперь используем (2) [dfracdfrac=beta Rightarrow dfrac=beta^2]

Диаграмма зависимости давления (p) от объёма (V) для некоторой массы идеального газа состоит из двух изотерм и двух отрезков прямых, проходящих через начало координат (см. рисунок). Найти объём газа (V_4) в состоянии 4, если известны его объёмы (V_1) , (V_2) и (V_3) в состояниях 1, 2 и 3 соответственно.

Прямая, проходящая через начало координат описывается уравнением [p(V)=kV,] где (k) – угол наклона прямой.
Пусть объем при переходе из 4 в 3 возрастает в (alpha) раз, тогда давление в точке 2 станет равно [p(alpha V_4)=alpha k V_4=alpha p_4] Аналогично доказывается для прямой, проходящей через точки 1 и 2. Пусть при переходе из 1 в 2 давление и объем возрастает в (beta) раз. Тогда для процессов 1 – 4 и 2 – 3 можно записать [p_2V_2=p_3V_3 hspace p_1V_1=p_4V_4 Rightarrow beta^2 p_1V_1=alpha^2 p_4V_4 hspace p_1V_1=p_4V_4 Rightarrow beta=alpha] Запишем уравнение изотермы для 1–4 и выразим искомую величину [p_1V_1=p_4V_4 Rightarrow V_4 =V_1 dfrac] Аналогично запишем для 2–3 [p_2V_2=p_3V_3 Rightarrow alpha p_1V_2 = alpha p_4 V_3 Rightarrow dfrac=dfrac] Объединяем последние два уравнения [V_4=dfrac]

В двух сосудах объемами (V) находились углекислый газ и азот, их плотности составляли (rho_1) = 44 (cdot) 10 (^) кг/м (^3) и (rho_2) = 56 (cdot) 10 (^) кг/м (^3) , затем их слили в сосуд объемом (V) . Найдите установивишееся давление в сосуде, если температура в нем (T) = 300 К.

Запишем уравнение Клапейрона–Менделеева: [pV=nu R T,] где (p) — давление газа, (V) — объем газа, (nu) — количество вещества газа, (R) — универсальная газовая постоянная, (T) — температура газа в Кельвинах.
Количество вещества можно найти по формуле: [nu=dfrac, ; ; ; ; (1)] где (m) — масса газа, (mu) — молярная масса газа.
Выразим давление из уравнения Клапейрона–Менделеева: [p=dfrac,; ; ; ; (2)] По закону Дальтона, давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов: [p=p_1+p_2, ; ; ; ; (3)] где (p_1) и (p_2) — давления углекислого газа и азота соответственно, (p) — общее давление смеси.
Подстваим (1), (2) в (3) с учетом того, что объемы газов и их температуры равны (так как находятся в одном сосуде): [p=dfrac+dfrac] Так как (dfrac) это плотность, то суммарное давление смеси: [displaystyle p=dfrac+dfrac=RTleft(dfrac+dfrac right)] Найдем общее давление смеси: [p=8,31 textcdot 300 textcdot left(dfrac text >text>+dfrac text >text>right)=7479text]

Объём 0,1 литра водорода нагревают при постоянном давлении от 300 до 3000 К. При высоких температурах молекулы водорода распадаются на отдельные атомы. На графике показана зависимость доли распавшихся молекул от температуры. Чему равен конечный объём газа? Ответ дайте в литрах.

“Основная волна 2020 Вариант 4”

Запишем уравнение Клапейрона–Мендлеева для первоначального и конечного состояний: [pV_1=nu_1RT_1] [pV_2=nu_2RT_2] где (nu) – количества вещества, (T) – температура, (V) – объем.
В данном процессе молекулярый водород (2 атома) распадается а атомарный (1 атом), при этом распадается 20% от начального количества (alpha =dfrac) при этом из одной молекулы образуется 2 атома водорода, то есть всего образовалось (2alpha nu_1) , тогда количество нераспавшихся молекул равно ((1-alpha)nu_1) , откуда количества вещества в конечном состоянии: [nu_2=2alphanu_1+(1-alpha)nu_1=(1+alpha)nu_1 quad (1)] Найдем из первых двух уравнений отношение объемов с учетом (1) [dfrac=dfracRightarrow V_2= 1,2cdot 0,1textdfrac>>=1,2text]

Источник

Источник