Молекулярно кинетические представления давление на стенки сосуда
Рассмотрим подробнее, что представляет собой один из основных параметров состояния – давление P. Ещё в XVIII веке Даниил Бернулли предположил, что давление газа есть следствие столкновения газовых молекул со стенками сосуда. Именно давление чаще всего является единственным сигналом присутствия газа.
Итак, находящиеся под давлением газ или жидкость действуют с некоторой силой на любую поверхность, ограничивающую их объем. В этом случае сила действует по нормали к ограничивающей объем поверхности. Давление на поверхность равно:
, |
где ΔF – сила, действующая на поверхность площадью ΔS.
Можно также говорить о давлении внутри газа или жидкости. Его можно измерить, помещая в газ или жидкость небольшой куб с тонкими стенками, наполненный той же средой (рис. 1.1).
Рис. 1.1
Поскольку среда покоится, на каждую грань куба со стороны среды действует одна и та же сила ΔF. В окрестности куба давление равно ΔF/ΔS, где ΔS – площадь грани куба. Из этого следует, что внутреннее давление является одним и тем же во всех направлениях и во всем объеме независимо от формы сосуда. Этот результат называется законом Паскаля: если к некоторой части поверхности, ограничивающей газ или жидкость, приложено давление P0, то оно одинаково передается любой части этой поверхности.
Допустим, автомобиль поднимается гидравлическим домкратом, состоящим, как показано на рисунке 1.2, из двух соединенных трубкой цилиндров с поршнями. Диаметр большого цилиндра равен 1 м, а диаметр малого – 10 см. Автомобиль имеет вес F2. Найдем силу давления на поршень малого цилиндра, необходимую для подъема автомобиля.
Рис. 1.2
Поскольку оба поршня являются стенками одного и того же сосуда, то в соответствии с законом Паскаля они испытывают одинаковое давление. Пусть – давление на малый поршень, а – давление на большой поршень. Тогда, т.к. P1 = P2, имеем:
, |
Отсюда F1=F2(S1/S2)=0,01F2
Таким образом, для подъема автомобиля достаточно давить на малый поршень с силой, составляющей лишь 1 % веса автомобиля.
Вычислим давление, оказываемое газом на одну из стенок сосуда (рис. 1.3).
Рис. 1.3
Обозначим: n – концентрация молекул в сосуде; m0 – масса одной молекулы. Движение молекул по всем осям равновероятно, поэтому к одной из стенок сосуда площадью S, подлетает в единицу времени (1/6)nvx молекул, где vx – проекция вектора скорости на направление, перпендикулярное стенке.
Каждая молекула обладает импульсом m0υx, но стенка получает импульс 2m0υx(при абсолютно-упругом ударе m0υx- (-m0υx)=2m0υx). За время dt о стенку площадью S успеет удариться число молекул, которое заключено в объёме V:
, |
Общий импульс, который получит стенка S:
, |
Разделив обе части равенства на S и dt, получим выражение для давления:
, | (1.2.1) |
Таким образом, мы определили давление как силу, действующую в единицу времени на единицу площади:
, | (1.2.2) |
Наивно полагать, что все молекулы подлетают к стенке S с одной и той же скоростью vx (рис. 1.3). На самом деле молекулы имеют разные скорости, направленные в разные стороны, то есть скорости газовых молекул – случайные величины.
Более точно случайную величину характеризует среднеквадратичная величина. Поэтому под скоростью vx2понимаем среднеквадратичную скорость <vx2> . Вектор скорости, направленный произвольно в пространстве, можно разделить на три составляющих:
, |
Ни одной из этих проекций нельзя отдать предпочтение из-за хаотичного теплового движения молекул, то есть в среднем . Следовательно, на другие стенки будет точно такое же давление. Тогда можно записать в общем случае:
или
(1.2.3) |
где <Ek>– средняя энергия одной молекулы. Это и есть основное уравнение молекулярно-кинетической теории газов.
Итак, давление газов определяется средней кинетической энергией поступательного движения молекул.
Уравнение (1.2.3) называют основным уравнением, потому что давление Р – макроскопический параметр системы здесь связан с основными характеристиками – массой и скоростью молекул.
Иногда за основное уравнение принимают выражение
Рассмотрим единицы измерения давления.
По определению, , поэтому размерность давления Н/м2.
1 Н/м2 = 1 Па; 1 атм. = 9,8 Н/см2 = 98066 Па ≈105 Па,
1 мм рт.ст. = 1 тор = 1/760 атм. = 133,3 Па,
1 бар = 105 Па; 1 атм. = 0,98 бар.
Источник
Как объясняют давление газа на основе учения о движении молекул?
Давление газа на стенки сосудов вызывается ударами молекул газа.
У газов нет ни формы ни постоянного объема. Они могут заполнить любой объем.
Количество молекул в каждом кубическом сантиметре увеличивается при сжатии (уменьшается при расширении) от этого число ударов о стенки сосуда увеличивается (уменьшается). Поэтому чем больший сосуд газ заполняет, тем меньше давление и наоборот.
Газ одинаково давит по всем направлениям, как пример -когда надуваешь воздушный шар, то он надувается равномерно.
Если газ находиться в маленьком объеме, то давление на стенки становится огромным, поэтому газ удобнее и безопаснее заключать в специальные прочные стальные баллоны.
Давление газа вызывается ударами молекул о стенки сосуда, т.к. молекулы хаотически движутся и постоянно соударяются друг с другом и со всеми встреченным препятствиями.
Как определить число молекул, содержащихся в 2.8 литрах диоксида углерода при нормальных условиях?
????Число молекул в веществе считается по формуле????
N=n*Na
????N-число молекул
????n-количество вещества в молях????
????Na-число Авогадро) оно равно 6*10^23 моль^-1
Сначала найдём количество вещества CO2????
n(CO2) = V(CO2) /Vм=2,8 л/22,4л/моль=
0,125 моль
????Теперь подставляем всё в формулу????
N=0,125 моль*6*10^23 моль^-1=0,75*10^23
1 3 · Хороший ответ
Теория квантового поля позволяет вселенной появиться из ниоткуда?
В статье » Возможно ли появление Вселенной из ничего»известный российский физик-космолог Я.Б.Зельдович дал исчерпывающий ответ на этот вопрос. Я склоняюсь перед таким научным авторитетом и полностью разделяю его точку зрения на этот вопрос
1 3 · Хороший ответ
Какое давление на стенки сосуда производят молекулы газа?
Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:
Концентрацию молекул газа n находят как отношение числа молекул N к объему газа V:
Произведение массы одной молекулы m0 на количество молекул N по смыслу есть масса газа m, поэтому:
Подставив в эту формулу исходные данные, можно вычислить какое давление на стенки сосуда производят молекулы газа.
Почему сильные взрывы (атомный) не сбивают Землю с орбиты, не меняют скорость прокрутки вокруг своей оси?
Примерно по той же причине, по которой вы не падаете на спину при каждом выдохе.
Так как вы выдыхаете некоторую массу воздуха, согласно второму закону Ньютона на вас действует некоторая реактивная сила. Но ваша масса настолько велика, что результирующее ускорение (сила, делённая на вашу массу) оказывается ничтожно малым. Но в реальном мире даже этого ничтожного ускорения вы не испытываете, потому что этой силы недостаточно для того, чтобы преодолеть силы трения (обо всё) и вашу неупругость.
То же самое и с Землёй: для того, чтобы сдвинуть такой массивный и неупругий шар как Земля нужно нечто более серьёзное чем атомный чих.
4 0 · Хороший ответ
По Эйнштейну, чем ближе тело или частица к скорости света, тем огромнее становится его масса. И вот,в Большом адронном коллайдере, протоны и ионы, движутся почти со скоростью света, и что это значит?
Релятивистской массы нет в природе и, согласно релятивистской механике Эйнштейна, масса остаётся инвариантной и равной массе покоя всегда, независимо от скорости (недоверчивым сюда).
Темп роста энергии частицы (E) с ростом скорости β = v/c (в единицах скорости света c) получен мною здесь. Если тело обладало скоростью β₁ = 0,9 при энергии Е₁, то для достижения скорости β₂ = 0,9. 999 (n девятoк после запятой), потребуется энергия E₂ = (3,16)ⁿ⁻¹⋅Е₁. Получается, что с каждой новой девяткой в величине скорости (β), энергия должна быть увеличена в 3,16 раз. Таким образом, неограниченный рост числа девяток (n) в численном значении скорости (β), приводит к неограниченному росту энергии.
Mаксимальная скорость зарегистрированного материального объекта (протона), ускоренного до околосветовых скоростей в космическом пространстве, равна β = 0,9. 999 (всего 23 девятки), а соответствующая энергия, E
10¹¹ ГэВ. Области в галактиках и механизмы ускорения до этих скоростей пока неизвестны. Максимальные энергии столкновения протонов, достигнутые на ускорителе БАК (LHC) в ЦЕРН, равны 1,3×10⁴ ГэВ, что в системе отсчёта неподвижной мишени соответствует энергии протона = 9×10⁷ ГэВ или скорости протона β = 0,999 999 999 999 9999 (16 девяток). В обоих случаях масса протона остаётся неизменной и равной массе покоя, 0.938 ГэВ.
Согласно релятивистской механике, со скоростью света (β = 1) могут лететь только безмассовые частицы (фотоны), но и у них есть недостаток − они не могут лететь медленнее.
Источник
Молекулярно кинетические представления давление на стенки сосуда
Рассмотрим подробнее, что представляет собой один из основных параметров состояния – давление P. Ещё в XVIII веке Даниил Бернулли предположил, что давление газа есть следствие столкновения газовых молекул со стенками сосуда. Именно давление чаще всего является единственным сигналом присутствия газа.
Итак, находящиеся под давлением газ или жидкость действуют с некоторой силой на любую поверхность, ограничивающую их объем. В этом случае сила действует по нормали к ограничивающей объем поверхности. Давление на поверхность равно:
Можно также говорить о давлении внутри газа или жидкости. Его можно измерить, помещая в газ или жидкость небольшой куб с тонкими стенками, наполненный той же средой (рис. 1.1).
Допустим, автомобиль поднимается гидравлическим домкратом, состоящим, как показано на рисунке 1.2, из двух соединенных трубкой цилиндров с поршнями. Диаметр большого цилиндра равен 1 м, а диаметр малого – 10 см. Автомобиль имеет вес F2. Найдем силу давления на поршень малого цилиндра, необходимую для подъема автомобиля.
Таким образом, для подъема автомобиля достаточно давить на малый поршень с силой, составляющей лишь 1 % веса автомобиля.
Вычислим давление, оказываемое газом на одну из стенок сосуда (рис. 1.3).
Каждая молекула обладает импульсом mυx, но стенка получает импульс 2mυx(при абсолютно-упругом ударе mυx— (-mυx)=2mυx). За время dt о стенку площадью S успеет удариться число молекул, которое заключено в объёме V:
Более точно случайную величину характеризует среднеквадратичная величина. Поэтому под скоростью vx 2 понимаем среднеквадратичную скорость 2 > . Вектор скорости, направленный произвольно в пространстве, можно разделить на три составляющих:
Итак, давление газов определяется средней кинетической энергией поступательного движения молекул.
Уравнение (1.2.3) называют основным уравнением, потому что давление Р – макроскопический параметр системы здесь связан с основными характеристиками – массой и скоростью молекул.
Иногда за основное уравнение принимают выражение
Рассмотрим единицы измерения давления.
По определению,
, поэтому размерность давления Н/м 2 .
1 Н/м 2 = 1 Па; 1 атм. = 9,8 Н/см 2 = 98066 Па ≈10 5 Па,
1 мм рт.ст. = 1 тор = 1/760 атм. = 133,3 Па,
Источник
Молекулярно кинетические представления давление на стенки сосуда
Компьютерная модель иллюстрирует вывод формулы давления идеального газа на стенку сосуда.
Давление газа на стенку сосуда можно вычислить, используя модель идеального газа.
В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υ скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υ скорости, параллельная стенке, остается неизменной (рис. 1).
Источник
Анонимный вопрос
30 января 2018 · 5,2 K
Люблю фантастику, вязание, начинающий садовод
Давление газа на стенки сосудов вызывается ударами молекул газа.
У газов нет ни формы ни постоянного объема. Они могут заполнить любой объем.
Количество молекул в каждом кубическом сантиметре увеличивается при сжатии (уменьшается при расширении) от этого число ударов о стенки сосуда увеличивается (уменьшается). Поэтому чем больший сосуд газ заполняет, тем меньше давление и наоборот.
Газ одинаково давит по всем направлениям, как пример -когда надуваешь воздушный шар, то он надувается равномерно.
Если газ находиться в маленьком объеме, то давление на стенки становится огромным, поэтому газ удобнее и безопаснее заключать в специальные прочные стальные баллоны.
Люблю простые слова для вещей, toki pona.
Давление газа вызывается ударами молекул о стенки сосуда, т.к. молекулы хаотически движутся и постоянно соударяются друг с другом и со всеми встреченным препятствиями.
Разгоняется ли гелиевый воздушный шарик при взлете вверх или движется с постоянной скоростью? И как с помощью законов физики можно объяснить ваш ответ?
О том что бывает с гелиевым шаром можно прочесть, например, здесь
https://ru.wikipedia.org/wiki/Метеозонд
Или тут (это история с Олимпийским Мишкой в 1980 году)
https://rg.ru/2015/06/26/rodina-mishka.html
Если Вы хотите понять физику процесса, то можно почитать здесь
https://online.mephi.ru/courses/physics/osnovi_mehaniki/data/lecture/9/p4.html
Если совсем уж на “пальцах”, то подъёмная силой тут будет сила Архимеда. Могут быть так-же и восходящие потоки воздуха (у поверхности Земли он теплее чем на высоте).
Против “ускорения” играют сила тяжести шарика и сила сопротивления воздуха, которая для шара пропорциональна квадрату скорости. Когда подъёмная сила сравнивается с силами тяжести и сопротивления, скорость подъёма станет постоянной.
На какой-то высоте плотность атмосферы станет настолько низкой, что сила Архимеда сравняется с силой тяжести, и сила сопротивления постепенно сведёт скорость подъёма к нулю. Возможно, что на этой стадии движение шара будет некоторое время иметь характер колебательных движений вверх-вниз, но эти колебания рано или поздно (скорее всего рано) затухнут, и шар будет двигаться на одной и той, же высоте.
Дальнейшее движение шара будет зависеть от того как быстро гелий будет истекать из него сквозь оболочку.
Прочитать ещё 2 ответа
Как передают давление жидкости, и газы и почему это происходит?
Образование: высшее (бакалавр + магистр). Увлечения: спорт, путешествие, кофе:)
Передача давления жидкостями и газами. Закон Паскаля.
В отличие от твёрдых тел отдельные слои и молекулы жидкости или газа могут свободно перемещаться относительно друг друга по всем направлениям. Достаточно, например, слегка подуть на поверхность воды в стакане, чтобы вызвать движение воды. На реке или озере при малейшем дуновении ветра появляется рябь.
Подвижностью частиц газа и жидкости объясняется, что давление, производимое на них, передаётся не только в направлении действия силы, а в каждую точку жидкости или газа.
Давление, производимое на жидкость или газ, передаётся в любую точку без изменений во всех направлениях.
Это утверждение называют законом Паскаля.
Источник: https://уроки.мирфизики.рф/?p=842 .
Прочитать ещё 1 ответ
Что больше греет Землю, излучение Солнца или тепловой поток от сжигания нефти, газа?
На широте Москвы солнце за год отдаёт каждому квадратному метру земной поверхности порядка 1000 кВт х ч энергии. Это только то, что доходит до земли, много забирают облака и атмосфера. Саяно-Шушенская ГЭС, крупнейшая в России, выдаёт 23,5 миллиардов кВт х ч электроэнергии в год. Это меньше, чем за год падает в виде излучения на участок Москвы размером 5 х 5 км.
Всё человечество выработало за 2019-й год около 27 000 ТВт х ч электроэнергии. Эквивалентно поглощению солнечного излучения 27 000 000 000 кв. м земли на широте Москвы. Кажется много, но это участок земли размером 165 х 165 км.
Влияние человека по сравнению с Солнцем смехотворно, его можно не принимать в расчёт. Просто в мире есть такие люди, которые придумают любую Грету Тумберг, чтобы провести свои весьма корыстные интересы в жизнь.
Источник
Вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Молекулярная физика – раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе их молекулярного строения.
Тепловое движение – беспорядочное (хаотическое) движение атомов или молекул вещества.
ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ
Молекулярно-кинетическая теория – теория, объясняющая тепловые явления в макроскопических телах и свойства этих тел на основе их молекулярного строения.
Основные положения молекулярно-кинетической теории:
- вещество состоит из частиц – молекул и атомов, разделенных промежутками,
- эти частицы хаотически движутся,
- частицы взаимодействуют друг с другом.
МАССА И РАЗМЕРЫ МОЛЕКУЛ
Массы молекул и атомов очень малы. Например, масса одной молекулы водорода равна примерно 3,34*10 -27 кг, кислорода – 5,32*10 -26 кг. Масса одного атома углерода m0C=1,995*10 -26 кг
Относительной молекулярной (или атомной) массой вещества Mr называют отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:(атомная единица массы).
Количество вещества – это отношение числа молекул N в данном теле к числу атомов в 0,012 кг углерода NA:
Моль – количество вещества, содержащего столько молекул, сколько содержится атомов в 0,012 кг углерода.
Число молекул или атомов в 1 моле вещества называют постоянной Авогадро:
Молярная масса – масса 1 моля вещества:
Молярная и относительная молекулярная массы вещества связаны соотношением: М = Мr*10 -3 кг/моль.
СКОРОСТЬ ДВИЖЕНИЯ МОЛЕКУЛ
Несмотря на беспорядочный характер движения молекул, их распределение по скоростям носит
характер определенной закономерности, которая называется распределением Максвелла.
График, характеризующий это распределение, называют кривой распределения Максвелла. Она показывает, что в системе молекул при данной температуре есть очень быстрые и очень медленные, но большая часть молекул движется с определенной скоростью, которая называется наиболее вероятной. При повышении температуры эта наиболее вероятная скорость увеличивается.
ИДЕАЛЬНЫЙ ГАЗ В МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ
Идеальный газ – это упрощенная модель газа, в которой:
- молекулы газа считаются материальными точками,
- молекулы не взаимодействуют между собой,
- молекулы, соударяясь с преградами, испытывают упругие взаимодействия.
Иными словами, движение отдельных молекул идеального газа подчиняется законам механики. Реальные газы ведут себя подобно идеальным при достаточно больших разрежениях, когда расстояния между молекулами во много раз больше их размеров.
Основное уравнение молекулярно-кинетической теории можно записать в виде
Скорость называют средней квадратичной скоростью.
ТЕМПЕРАТУРА
Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.
Тепловое или термодинамическое равновесие – такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.
Температура – физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют
одну и ту же температуру.
Абсолютный нуль температуры – предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.
Термометр – прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения – 100°С.
Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).
Связь температуры в энергетических единицах и температуры в градусах Кельвина:
где k = 1,38*10 -23 Дж/К – постоянная Больцмана.
Связь абсолютной шкалы и шкалы Цельсия:
T = t + 273
где t – температура в градусах Цельсия.
Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:
Средняя квадратичная скорость молекул
Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так:
p=nkT
УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА
Пусть газ массой m занимает объем V при температуре Т и давлении р, а М– молярная масса газа. По определению, концентрация молекул газа: n = N/V, где N-число молекул.
Подставим это выражение в основное уравнение молекулярно-кинетической теории:
Величину R называют универсальной газовой постоянной, а уравнение, записанное в виде
называют уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Нормальные условия – давление газа равно атмосферному ( р = 101,325 кПа) при температуре таяния льда ( Т = 273,15 К ).
1. Изотермический процесс
Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.
Если Т =const, то
Закон Бойля-Мариотта
Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется: p1V1=p2V2 при Т = const
График процесса, происходящего при постоянной температуре, называется изотермой.
2. Изобарный процесс
Процесс изменения состояния термодинамической системы при постоянном давлении называют
изобарным.
Закон Гей-Люссака
Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре:
Если газ, имея объем V0 находится при нормальных условиях: а затем при постоянном давлении переходит в состояние с температурой Т и объемом V, то можно записать
Обозначив
получим V=V0T
Коэффициент называют температурным коэффициентом объемного расширения газов. График процесса, происходящего при постоянном давлении, называется изобарой.
3. Изохорный процесс
Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Ecли V = const , то
Закон Шарля
Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре:
Если газ, имея объем V0,находится при нормальных условиях:
а затем, сохраняя объем, переходит в состояние с температурой Т и давлением р, то можно записать
График процесса, происходящего при постоянном объеме, называется изохорой.
Пример. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12°С, если масса этого воздуха 2 кг?
Из уравнения состояния идеального газа
определим величину давления:
Ответ: давление сжатого воздуха равно 8,2 *10 6 Па.
Источник