На дно сосуда наполненного водой

На дно сосуда наполненного водой thumbnail

А так ли хорошо знакома вам гидроаэростатика? // Квант. — 2011. — № 3. — C. 32

По специальной договоренности с редколлегией и редакцией журнала “Квант”

• …доказано, что более легкие, чем жидкость, тела, будучи
насильно погружены в эту жидкость, движутся вверх с
силой, равной тому весу, на который жидкость, имеющая
объем, равный этому телу, будет тяжелее последнего.
Архимед

Мы погружены на дно безбрежного моря воздушной
стихии, которая, как известно из неоспоримых опытов,
имеет вес, причем он наибольший вблизи поверхности
Земли…
Эванджелиста Торричелли

Сосуд, наполненный водой, является новым принципом
механики и новой машиной для увеличения сил в
желаемой степени…
Блез Паскаль

…Полет на свободном аэростате представляет нечто
совершенно исключительное.
Камиль Фламмарион

Это и есть уравнение гидростатики. В общем случае оно
не имеет решения.
Ричард Фейнман

Безбрежное небо и неведомые глубины океана всегда влекли человека, побуждая его подняться как можно выше в воздух и опуститься как можно глубже под воду. Более двух тысяч лет назад был установлен один из самых древних законов, с которым вы знакомитесь одним из самых первых в курсе школьной физики, — закон Архимеда. С тех пор можно отсчитывать начало научного освоения двух стихий и рождение гидроаэростатики.

Мысли выдающихся ученых — как верстовые столбы на пути понимания и применения этого закона. Полеты на огромные высоты и глубоководные погружения совершаются сегодня на аппаратах, оснащенных современнейшим оборудованием, не только ради рекордов. Исследования атмосферы, в том числе последствий глобального потепления, разведка с воздуха, доставка грузов в труднодоступные места, совершенствование надводного и подводного флота, изучение морской фауны и флоры, поиски полезных ископаемых под океанским дном — вот неполный список задач, для решения которых необходимы аэростаты и дирижабли, научные суда и батискафы и… лежащий в основе их работы добрый старый закон Архимеда.

Но и в более простых задачах можно обнаружить неожиданные «подводные камни». Однако, не боясь предупреждения Фейнмана, беритесь за них — решения обязательно найдутся!

Вопросы и задачи

  1. Что изображено на приведенном здесь рисунке? А если его перевернуть?

    Img Kvant K-2011-03-001.jpg

  2. Два сплошных цилиндра одинаковой массы и равного диаметра, но один алюминиевый, а другой свинцовый, плавают в вертикальном положении в ртути. Какой из них погружен глубже?
  3. В двух одинаковых сосудах с водой плавают плоская широкая и высокая узкая коробочки. Когда в каждую из них положили по одинаковому тяжелому грузику, они остались на плаву. В каком из сосудов уровень воды при этом поднялся выше?
  4. Стакан с наклонными стенками, наполненный водой до краев, взвешивают на весах. Затем взвешивают этот же стакан с опущенным в него деревянным бруском, плавающим так, что вода доходит до краев стакана. Отличаются ли показания весов?
  5. В ведре, наполненном доверху водой, плавает дырявая кастрюля. Выльется ли часть воды из ведра, когда кастрюля утонет?
  6. Купаясь в речке с илистым дном, можно заметить, что ноги больше вязнут в иле на мелких местах, чем на глубоких. Как это можно объяснить?
  7. Для погружения на 10 метров подводная лодка набирает в себя 100 тонн воды. А сколько воды ей надо набрать, чтобы погрузиться на 100 метров?
  8. Стальной шарик плавает в ртути. Увеличится или уменьшится глубина его погружения, если повысить температуру?
  9. Вес жидкости, налитой в сосуд, равен 3 Н. В жидкость погружают тело. Может ли архимедова сила, действующая на тело, равняться 10 Н?
  10. В двух одинаковых сосудах на поверхности воды плавают одинаковые пробковые цилиндры, к которым снизу на тонких нитях привязаны одинаковые грузы, причем один груз находится в воде, а другой лежит на дне сосуда. Одинаков ли вес сосудов со всем, что в них находится?
  11. В сосуде с водой плавает кусок льда, удерживаемый натянутой нитью, прикрепленной к дну сосуда. Как изменится уровень воды в сосуде, когда лед растает?
  12. Порожнюю закрытую бутылку (с плоским дном) погружают в воду один раз горлышком вниз, а другой раз горлышком вверх на одну и ту же глубину, равную половине высоты бутылки. В каком случае совершается большая работа?
  13. Вес любого тела на экваторе примерно на полпроцента меньше, чем в северных широтах. Изменяются ли осадка судна и его грузоподъемность при переходе из Северного Ледовитого океана в экваториальные воды? Плотность морской воды считайте везде одинаковой.
  14. Со дна высокого стеклянного сосуда, наполненного водой, поднимается небольшой пузырек воздуха. Как изменяется выталкивающая его сила? Каков характер движения пузырька?
  15. Из какого материала надо сделать гири, чтобы при точном взвешивании можно было не вводить поправки на уменьшение веса в воздухе?
  16. Одинаковые по массе оболочки двух шаров сделаны из разных материалов: одна — из эластичной резины, другая — из прорезиненной ткани. Оболочки шаров наполнили водородом одного и того же объема и отпустили в воздухе. Какой из шаров поднимется на большую высоту?
  17. Как зависит подъемная сила аэростата или дирижабля от температуры, при которой производится полет?
  18. Чтобы дирижабль мог взлететь, его наполняют газом, более легким, чем воздух. Не лучше ли совсем выкачать из него газ?
  19. Почему воздушный шар с закрытым выпускным клапаном, поднявшись на большую высоту, может лопнуть?
  20. На дне сосуда с газом лежит тело, плотность которого немного больше плотности газа. Можно ли, повышая давление газа, заставить тело подняться вверх?

Микроопыт

В аквариум прямоугольной формы, наполненный водой, поместите любое тело, которое будет в нем плавать. Можно ли определить массу этого тела без взвешивания?

Любопытно, что…

…хотя Архимед считал себя прежде всего теоретиком, а работу над практическими приложениями относил к деятельности второго сорта, с его именем связывают около 40 изобретений.

…утверждение, получившее в науке имя Паскаля и ставшее одним из основных законов гидростатики, возможно, не в столь явной форме обнаруживается в трудах и Леонардо да Винчи, и Стевина, и Галилея, и Торричелли.

…несмотря на свою историческую важность, закон Архимеда не относится к фундаментальным законам природы. Так, его можно считать прямым следствием закона Паскаля; Стевин довольно просто обосновал его, исходя из принципов равновесия с помощью так называемого метода отвердевания жидкости; закон Архимеда выводится также из закона сохранения энергии.

Читайте также:  Глаза новорожденного лопнул сосуд

…чтобы доказать, что пространство над столбиком ртути — в знаменитом опыте с заполненной ею стеклянной трубкой — остается пустым, Торричелли впускал туда воду, которая под действием атмосферного давления врывалась в него «со страшным напором» и целиком его заполняла.

…неосознанно, не пользуясь расчетами, люди издревле опирались на закон Архимеда, когда, например, необходимо было преодолевать водные преграды. И лишь в 1666 году английский корабел Энтони Дин, к удивлению современников, теоретически определил осадку корабля и прорезал в его бортах отверстия для пушек до его спуска на воду, в то время как раньше это проделывали, когда корабль был уже на плаву.

…к основоположникам аэростатики справедливо причисляют и Роберта Бойля, именем которого назван известный газовый закон. Так, после усовершенствования им насоса для откачки воздуха из резервуаров большого объема тут же возникли проекты по созданию летательных аппаратов, «более легких, чем воздух», причем сразу же предусматривались военные применения таких машин.

…полет людей на воздушном шаре, заполненном горячим дымом, долго не позволял совершить братьям Монгольфье сам французский король, опасаясь за жизнь аэронавтов. Первый полет был осуществлен лишь в 1783 году. И в том же 1783 году (в год своей смерти) великий математик Леонард Эйлер подробно рассчитал подъемную силу аэростата, словно завещал разумно рисковать, опираясь на знания законов физики.

…в 1932 году швейцарский физик Огюст Пикар поднялся на аэростате собственной конструкции в стратосферу на высоту почти 17 километров, а позднее на разработанном им же батискафе погрузился в самую глубокую точку Средиземного моря. В 1960 году его сын Жак на батискафе «Триест» погрузился в Марианскую впадину на рекордную глубину около 11 тысяч метров. Семейную традицию поддержал внук Огюста Пикара — Бертран, совершивший в 1999 году кругосветное путешествие на воздушном шаре «Орбитер» за двадцать дней без промежуточной посадки.

…автор модели расширяющейся Вселенной Александр Фридман занимался еще и метеорологией и в 1925году принял участие в рекордном по тому времени полете на воздушном шаре до высоты 7400 метров. А Огюст Пикар, научным руководителем которого был автор теории относительности Альберт Эйнштейн, поднимался в небо на аэростате в том числе и для проведения эксперимента, подтвердившего эту теорию.

…на смену людям, совершающим глубоководные погружения в батискафах, приходят роботы, «одетые» в специальную керамическую оболочку, позволяющую выдерживать чудовищное давление. Так, в 2009 году американский робот «Нерей» провел на дне Марианского желоба десять часов, выполняя различные измерения.

Ответы

  1. Равновесие воздушных шаров. На перевернутом рисунке -равновесие сосудов с жидкостью.
  2. Имея равный вес, цилиндры вытесняют одинаковые объемы ртути, а так как диаметры их равны, то одинаковы и глубины погружения.
  3. Объем погруженной в воду части каждой коробочки меняется на одну и ту же величину. Поскольку сосуды одинаковы, то и уровень воды в каждом из них повысится одинаково.
  4. Нет, так как вес вытесненной бруском воды равен весу бруска.
  5. Нет, не выльется. Плотность материала кастрюли больше плотности воды, поэтому когда кастрюля утонет, она будет вытеснять меньший объем, нежели когда она плавала. Значит, уровень воды в ведре понизится.
  6. На мелководье меньше действующая на человека выталкивающая сила.
  7. Практически столько же, так как воду при погружении на такие глубины можно считать несжимаемой.
  8. При нагревании ртуть расширяется сильнее, чем сталь, поэтому выталкивающая сила уменьшится, и шарик опустится глубже.
  9. Да, может, если размеры тела близки к размерам сосуда.
  10. Во втором сосуде пробковый цилиндр погрузился меньше, чем в первом, т.е. вытеснил меньше воды. Следовательно, второй сосуд тяжелее первого.
  11. Допустим, что нить оборвалась. Тогда лед всплывет, и уровень воды в сосуде понизится. При дальнейшем таянии льда уровень воды уже меняться не будет.
  12. Во втором, так как у бутылки внешний объем нижней части всегда больше объема верхней части.
  13. Не изменяются, поскольку в весе одновременно теряют и судно, и вытесняемая им вода.
  14. По мере поднятия увеличивается объем пузырька. Выталкивающая сила, пропорциональная объему пузырька, будет расти. На пузырек также будет действовать сила сопротивления, но она пропорциональна площади сечения пузырька и поэтому будет возрастать медленнее. Значит, движение пузырька будет ускоренным.
  15. Гири нужно сделать из того же материала, что и взвешиваемое тело.
  16. На одной и той же высоте над землей у шара из эластичной резины объем будет больше, чем у шара из прорезиненной ткани. Значит, выталкивающая сила, действующая на него, будет больше, и он поднимется выше.
  17. Чем больше разница в плотностях воздуха и газа, заполняющего аэростат или дирижабль, тем больше подъемная сила. Следовательно, она возрастает при понижении температуры воздуха, когда он становится плотнее.
  18. Дирижабль без газа внутри, конечно, стал бы легче, но его раздавило бы давление наружного воздуха.
  19. Оболочка шара может не выдержать разности внутреннего и уменьшившегося внешнего давлений.
  20. В принципе, можно – если сжимаемость газа больше сжимаемости тела.

Микроопыт

Можно. Для этого достаточно найти объем вытесненной телом воды, измерив сечение аквариума и изменение уровня воды при опускании в нее тела, и затем умножить этот объем на плотность воды.

Что читать в «Кванте» о гидроаэростатике

(публикации последних лет)

  1. «Как попасть на Таинственный остров» — 2004, №1, с. 25;
  2. «Путешествие на воздушном шаре» — 2004, №3, с.31;
  3. «Задачи с жидкостями» — 2006, №1, с.40;
  4. «Вверх и вниз через атмосферу» — 2007, №1, с.9;
  5. «Гидростатика в стакане» — 2008, №3, с.47;
  6. «Устоит ли наш кораблик?» — 2008, №4, с.42;
  7. «Силы сопротивления в задачах динамики» — 2009, №1, с.50;
  8. «Подводные камни» силы Архимеда» — 2009, №2, с.46;
  9. «О плавании одномерных объектов» — 2010, №4, с.36.

Материал подготовил А.Леонович

Источник

605. В какой воде и почему легче плавать: в морской или речной?
Легче плавать в морской воде, так как на тело, погруженное в морскую воду будет действовать большая выталкивающая сила из-за того, что плотность морской воды больше плотности речной воды.

Читайте также:  Сосуды большого круга кровообращения функции

606. К чашам весов подвешены два одинаковых железных шарика (рис. 183). Нарушится ли равновесие, если шарики опустить в жидкость? Ответ объясните.
Равновесие весов нарушится, так как архимедовы силы, действующие на шарики, будут различны. Перевесит чаша с шариком, погруженным в керосин, так как на нее будет действовать меньшая выталкивающая сила.

607. В сосуд погружены три железных шарика равных объемов (рис. 184). Одинаковы ли силы, выталкивающие шарики? (Плотность жидкости вследствие ничтожной сжимаемости на любой глубине считать одинаковой.)
Выталкивающие силы, действующие на шарики, не зависят от глубины погружения и поэтому будут равны (рис. 184)

608. Свинцовая дробинка опускается с постоянной скоростью на дно сосуда, наполненного маслом. Какие силы действуют на дробинку?
На дробинку действуют сила тяжести, выталкивающая сила и сила вязкого трения. Эти силы скомпенсированы.

609. К чашам весов подвешены две гири равного веса: фарфоровая и железная. Нарушится ли равновесие весов, если гири опустить в сосуд с водой?
При одинаковом весе гирь объем железной гирьки будет меньше объема фарфоровой, так как плотность железа больше. Поэтому, если гири опустить в сосуд с водой, на фарфоровую будет действовать большая выталкивающая сила, и железная гиря перевесит.

610. В сосуде три жидкости: слегка подкрашенная вода, растворитель (четыреххлористый углерод) и керосин. Укажите на порядок расположения этих жидкостей. (Плотность растворителя 1595 кг/м3.)
Снизу вверх: четыреххлористый углерод, вода, керосин.

611. Почему горящий керосин нельзя тушить водой?
Потому что вода будет опускаться вниз и не будет закрывать доступ воздуха (необходимого для горения) к керосину.

612. На дне сосуда с водой лежат одинаковой массы шары: чугунный и железный. Одинаковое ли давление на дно сосуда производят эти шары?
Сила давления, оказываемая чугунным шаром, будет меньше, так как на него будет действовать большая выталкивающая сила, так как плотность чугуна меньше плотности железа. Если площади соприкосновения с дном одинаковы, то давление, оказываемое железным шаром, будет больше.

613. На поверхности воды плавают бруски из дерева, пробки и льда (рис. 185). Укажите, какой брусок пробковый, а какой из льда.
3 — брусок из пробки, 1 — брусок изо льда, так как плотность пробки наименьшая из заданных веществ, льда — наибольшая.

614. Березовый и пробковый шарики равного объема плавают на воде. Какой из них глубже погружен в воду? Почему?
Так как плотность березового шарика больше плотности пробкового, то он глубже будет погружен в воду.

615. Для отделения зерен ржи от ядовитых рожков спорыньи их смесь высыпают в воду. Зерна ржи и спорыньи в ней тонут. Затем в воду добавляют соль. Рожки начинают всплывать, а рожь остается на дне. Объясните это явление.
Объясняется это явление тем, что плотность рожков спорыньи меньше плотности соленой воды, а плотность ржи — больше.

616. В сосуд, содержащий воду, керосин и жидкий растворитель (четыреххлористый углерод, плотность которого равна 1595 кг/м3), опущены три шарика: парафиновый, пробковый и стеклянный. Как расположены шарики?
Пробковый шарик будет плавать на поверхности керосина, парафиновый — на границе вода — керосин, а стеклянный покоиться на дне сосуда.

617. В сосуде с водой (при комнатной температуре) плавает пробирка (рис. 186). Останется ли пробирка на такой же глубине, если воду слегка подогреть; охладить? (Увеличение объема пробирки при нагревании и охлаждении не учитывать. Охлаждение производить при температуре не ниже 4 °С.)
При нагревании воды пробирка начнет двигаться вниз, при охлаждении — вверх. Объясняется это тем, что плотность воды при нагревании уменьшается, а при охлаждении возрастает.

618. В сосуд с водой опущены три одинаковые пробирки с жидкостью (рис. 187). На какую из пробирок действует наибольшая выталкивающая сила? (Плотность воды на всей глубине считать одинаковой.) Ответ обоснуйте.
На вторую и третью пробирки действуют одинаковые по величине выталкивающие силы, равные весу вытесненной ими воды. На первую пробирку действует меньшая выталкивающая сила, так как вес вытесненной ей воды меньше, чем вес воды, вытесненной второй или третьей пробиркой.

619. На рисунке 188 изображен поплавок, который можно использовать как весы. Объясните, как действуют такие весы.
Поплавок будет погружаться в воду пропорционально нагружаемому весу. Поэтому его можно использовать как весы.

620. Пробирка, в которой находится брусок пластилина, плавает в воде (рис. 189, а). Изменится ли глубина погружения пробирки в воду, если пластилин вынуть и подклеить ко дну (рис. 189, 6)1 Если изменится, то как? Ответ объясните.
Глубина погружения пробирки не изменится, так как по-прежнему будет вытесняться количество воды, равное весу пробирки и пластилина. Если же пластилин отвалится и утонет, то глубина погружения пробирки уменьшится.

621. Стальной брусок подвешен к пружине и опущен в воду (рис. 190). С одинаковой ли силой давит вода на верхнюю и нижнюю поверхности бруска? Ответ обоснуйте.
Давление на нижнюю поверхность бруска будет больше, чем на верхнюю. Поэтому и сила давления на нижнюю поверхность бруска будет больше.

622. Подвешенный на нити стальной брусок погружен в воду (рис. 190). Назовите взаимодействующие тела и силы, действующие на брусок. Изобразите эти силы графически.
Брусок взаимодействует с Землей, пружиной и водой. Силы, действующие на брусок: сила тяжести, направленная вниз; сила Архимеда и сила упругости нити, направленные вверх. Сила тяжести равна по модулю сумме сил Архимеда и упругости нити.

623. Деревянный шар плавает на воде (рис. 191). Назовите силы, действующие на шар. Изобразите эти силы графически.
На шар действуют сила тяжести, направленная вниз, и сила Архимеда, направленная вниз. Сила тяжести равна по модулю силе Архимеда.

624. Стальной брусок, вес которого 15,6 Н, погрузили в воду (рис. 190). Определите значение и направление силы натяжения пружины.

625. Вычислите выталкивающую силу, действующую на гранитную глыбу, которая при полном погружении в воду вытесняет ее некоторую часть. Объем вытесненной воды равен 0,8 м3.

Читайте также:  Как лечить сосуды шейного

626. Железобетонная плита размером 3,5×1,5×0,2 м полностью погружена в воду. Вычислите архимедову силу, действующую на плиту.

627. Железобетонная плита размером 4×0,3×0,25 м погружена в воду на половину своего объема. Какова архимедова сила, действующая на нее?

628. Один брусок имеет размер 2x5x10 см, а соответствующий размер другого бруска в 10 раз больше (0,2×0,5×1 м). Вычислите, чему будут равны архимедовы силы, действующие на эти бруски при полном погружении их в пресную воду, в керосин.

629. Плавающий на воде деревянный брусок вытесняет воду объемом 0,72 м3, а будучи погруженным в воду целиком — 0,9 м3. Определите выталкивающие силы, действующие на брусок. Объясните, почему различны эти силы.

630. Определите показания пружинных весов при взвешивании в воде тел объемом 100 см3 из алюминия, железа, меди, свинца.

631. Определите, что покажут пружинные весы, если тела объемом 100 см3 из алюминия, железа, свинца взвешивать в керосине.

632. Чему равна архимедова сила, действующая в воде на тела объемом 125 см3 из стекла, пробки, алюминия, свинца?

633. Пробирку поместили в мензурку с водой. Уровень воды при этом повысился от деления 100 см3 до деления 120 см3. Сколько весит пробирка, плавающая в воде?

634. На сколько гранитный булыжник объемом 0,004 м3 будет легче в воде, чем в воздухе?

635. Какую силу надо приложить, чтобы поднять под водой камень массой 30 кг, объем которого 0,012 м3?

636. Брусок размером 20х 10×5 см может занимать в воде указанные на рисунке 192 положения. Докажите, что на него действует одна и та же выталкивающая сила.
Сила Архимеда равна весу жидкости, вытесненной телом, и не зависит от ориентации тела в жидкости.

637. До какого уровня поднимется вода в мензурке, если в ней будет плавать брусок; шар (рис. 193)?

638. Масса пробкового спасательного круга равна 4,8 кг. Определите подъемную силу этого круга в пресной воде.

639. Какой максимальной подъемной силой обладает плот, сделанный из 10 бревен объемом по 0,6 м3 каждое, если плотность дерева 700 кг/м3?

640. Плот состоит из 12 сухих еловых брусьев. Длина каждого бруса 4 м, ширина 30 см и толщина 25 см. Можно ли на этом плоту переправить через реку автомашину весом 10 кН?

641. Прямоугольная баржа длиной 5 м и шириной 3 м после загрузки осела на 50 см. Определите вес груза, принятого баржей.

642. Судно, погруженное в пресную воду до ватерлинии, вытесняет воду объемом 15 000 м3. Вес судна без груза равен 5 • 106 Н. Чему равен вес груза?

643. После разгрузки баржи ее осадка в реке уменьшилась на 60 см. Определите вес груза, снятого с баржи, если площадь сечения баржи на уровне воды равна 240 м2.

644. Площадь сечения теплохода на уровне воды равна 2000 м2. Сколько нужно добавить груза, чтобы теплоход погрузился в морской воде еще на 1,5 м, считая, что борта его на данном уровне вертикальны?

645. Сколько воды вытесняет плавающий деревянный брус длиной 3 м, шириной 30 см и высотой 20 см? (Плотность дерева 600 кг/м3.)

646. Площадь льдины 8 м2, толщина 25 см. Погрузится ли она целиком в пресную воду, если на нее встанет человек, вес которого равен 600 Н?

647. Какой минимальный объем должна иметь подводная часть надувной лодки массой 7 кг, чтобы удержать на воде юного рыболова, вес которого равен 380 Н?

648. Известно, что масса мраморной плиты равна 40,5 кг. Какую силу надо приложить, чтобы удержать эту плиту в воде?

649. Какую силу надо приложить, чтобы удержать под водой кусок пробкового дерева, масса которого равна 80 г?

650. Плавающее тело вытесняет керосин объемом 120 см3. Какой объем воды будет вытеснять это тело? Определите массу тела.

651. Используя данные рисунка 194, определите плотность камня.

652. Было установлено, что при полном погружении куска меди в керосин вес его уменьшается на 160 Н. Каков объем этого куска меди?

653. На коромысле весов уравновесили два одинаковых сосуда. Нарушится ли равновесие весов, если один сосуд поместить в открытую банку и заполнить ее углекислым газом (рис. 195)?
Равновесие весов нарушится, так как архимедова сила в случае углекислого газа больше, чем в воздухе. Поэтому правый сосуд перевесит.

654. Один из двух одинаковых воздушных шаров заполнили водородом, другой до такого же объема — гелием. Какой из этих шаров обладает большей подъемной силой? Почему?
Большей подъемной силой обладает шар, заполненный водородом, так как плотность водорода меньше плотности гелия.

655. Равны ли массы пятирублёвой монеты и куска пробки, уравновешенные на очень точных и чувствительных весах? Ответ объясните.
Массы пробки и монеты не равны из-за того, что на них действует различная сила Архимеда.

656. Назовите газы, в которых мог бы плавать мыльный пузырь, наполненный воздухом. (Весом пузыря пренебречь.)
Углекислый газ, озон, хлор, аргон, ксенон, криптон, находящиеся при давлении, равном атмосферному.

657. Детский шар объемом 0,003 м3 наполнен водородом. Масса шара с водородом 3,4 г. Какова подъемная сила детского шара?

658. Радиозонд объемом 10 м3 наполнен водородом. Какого веса радиоаппаратуру он может поднять в воздухе, если оболочка его весит 6 Н?

659. Масса снаряжения воздушного шара (оболочки, сетки, корзины) составляет 450 кг. Объем шара 1600 м3. Вычислите, какой подъемной силой будет обладать этот шар при наполнении его водородом, гелием, светильным газом. (Плотность светильного газа 0,4 кг/м3.)

660. Стратостат «СССР», на котором стратонавты поднялись на высоту 19 км, имел объем 24 500 м3. При подъеме в оболочке стратостата было только 3200 м3 водорода. Почему же объем оболочки сделали таким большим?
Объем оболочки стратостата был сделан с большим запасом, поскольку с высотой давление наружного воздуха падает.

Источник