На весах уравновесили сосуд с водой и затем опустили в него

На весах уравновесили сосуд с водой и затем опустили в него thumbnail

На весах уравновесили отливной сосуд с водой. В воду опустили деревянный брусок. Равновесие весов вначале нарушилось. Но когда вся вода, вытесненная плавающим бруском, вытекла из сосуда, равновесие весов востановилось. Объясните это явление

На весах уравновесили сосуд с водой и затем опустили в него

спросил

24 Дек, 16

от
снежко

в категории школьный раздел

решение вопроса

+4

Когда в воду опустили брусок, равновесие нарушилось, поскольку на чашку весов стал действовать и вес бруска (Рбр). Поскольку брусок плавает, то вес вытесненной им воды равен весу бруска. Когда вся вытесненная бруском вода вылилась, снова установилось равновесие.

На весах уравновесили сосуд с водой и затем опустили в него

ответил

24 Дек, 16

от
страничка

+4

Когда в воду опустили брусок, на чашу весов стал действовать вес бруска, т.к. брусок плавает, то вес вытесненной им воды равен весу бруска. Когда вытесненная вода вылилась, установилось равновесие.

На весах уравновесили сосуд с водой и затем опустили в него

ответил

26 Май, 17

от
лисаб

Похожие вопросы

2 ответов

На весах уравновесили отливной сосуд с водой (рис. а).в воду опустили деревянный брусок. Равновесие весов вначале нарушилось (рис. б).но когда

На весах уравновесили сосуд с водой и затем опустили в него

спросил

26 Май, 17

от
tutsy

в категории школьный раздел

1 ответ

Открытый сосуд с газом уравновесили на весах. Почему со временем нарушилось равновесие весов?

На весах уравновесили сосуд с водой и затем опустили в него

спросил

18 Сен, 19

от
liniska

в категории школьный раздел

1 ответ

Открытый сосуд с эфиром уравновесили на весах. Через некоторое время равновесие весов нарушилось. Почему?

На весах уравновесили сосуд с водой и затем опустили в него

спросил

12 Фев, 17

от
simaks

в категории школьный раздел

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.
поделиться знаниями или
запомнить страничку
  • Все категории
  • экономические
    42,901
  • гуманитарные
    33,438
  • юридические
    17,873
  • школьный раздел
    597,902
  • разное
    16,713

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Источник

Основы гидродинамики

Для успешного решения задания № 5 требуется знание основ гидродинамики. К ним относится понимание процессов, происходящих с жидкостями и телами, контактирующими с жидкостями, сущности физ.величин плотности и давления, а также формул, связывающих их с другими физ.величинами. Необходимая для решения задач такого плана информация имеется в разделе теории.

Теория к заданию №5 ОГЭ по физике

Плотность вещества

Плотностью называют массу вещества, которая приходится на единицу объема. Следовательно, плотностью можно считать удельную массу вещества. Количественно плотность определяют по формуле:

где m – массе вещества, V – его объем.

По этой же формуле вычисляется и средняя плотность. Для расчета при этом берется масса всего вещества и его общий объем.

Давление

Давлением называется: 1) сила, которая воздействует на поверхность твердого тела; 2) степень (сила) упругости жидкости либо газа. По сути, давление – это мера механического напряжения. Эта физ.величина является скалярной.

Давление в физике традиционно обозначается лат.буквой р. Единица измерения давления – паскаль (Па).

Атмосферное давление – это сила воздействия атмосф.столба на все физ.объекты (тела), находящиеся в атмосфере Земли, а также на земную поверхность. Если атмосфера является стационарной и покоящейся, то атмосф.давление на материальный объект соответствует весу столба воздуха над этим объектом, приходящегося на единицу площади. Атмосф.давление измеряется в мм ртутного столба (мм рт.ст.). Нормальным принято давление в 760 мм рт. ст. при t=0ºC. В пересчете на единицы СИ это давление соответствует 101325Па.

Сила Архимеда

На помещенное в жидкость физ.тело воздействует выталкивающая сила, равная по величине силе тяжести, испытываемая этим телом. Причина возникновения архимедовой силы – неодинаковость гидростатического давления в жидкости на различных глубинах. Точка ее приложения называется центром давления, который является центром масс тела (или его части) погруженного в жидкость

Формула для вычисления силы Архимеда:

где ρж – плотность жидкости; V – объем части физ.тела, помещенной в жидкость, или всего тела, если оно погружено в жидкость полностью.

Сообщающиеся сосуды

Сообщающимися считаются сосуды, которые объединены ниже поверхности жидкости в единую систему, причем так, что жидкость может перетекать из одного в другой.

Закон сообщающихся сосудов:

что означает обратную пропорциональную зависимость высоты столбов жидкостей и их плотностей.

Если в сообщающихся сосудах находится жидкость однородная, то высота столбов свободной поверхности жидкости в них совпадает.

Разбор типовых вариантов заданий №5 ОГЭ по физике

Демонстрационный вариант 2018

Цилиндр 1 поочередно взвешивают с цилиндром 2 такого же объема, а затем с цилиндром 3, имеющим меньший объем (см. рисунок).

Максимальную среднюю плотность имеет цилиндр

  1. 1
  2. 2
  3. 3
  4. 1 и 3
Алгоритм решения:
  1. Анализируем условие и рисунок слева (цилиндры 1 и 2). Определяем соотношение плотностей цилиндров.
  2. Анализируем условие и рисунок справа (цилиндры 3 и 1). Делаем вывод относительно соотношения плотностей.
  3. Определяем цилиндр с максимальной плотностью.
Решение:
  1. Согласно условию: . Поскольку на весах слева цилиндр 1 перевешивает 2, то это значит, что . Тогда из уравнения следует, что  .
  2. По условию  . Поскольку весы справа уравновешены, то это значит, что массы цилиндров равны, и из уравнения для плотности следует:  .
  3. Объединив неравенства (1) и (2), получим: . Отсюда: максимальная плотность у 3-го цилиндра.

Ответ: 3

Первый вариант (Камзеева, № 7)

Одно из колен U-образного манометра соединили с сосудом, наполненным газом (см. рис.). Атмосферное давление равно 760 мм рт.ст. Чему равно давление газа в сосуде? В качестве жидкости в манометре используется ртуть.

  1. 1160 мм рт.ст
  2. 500 мм рт.ст.
  3. 360 мм рт.ст.
  4. 100 рт.ст.
Алгоритм решения:
  1. Анализируем условие и рисунок. Делаем вывод о соотношении атмосф.давления и давления в сообщающихся сосудах.
  2. Определяем искомую величину давления газа.
  3. Фиксируем ответ.
Решение:
  1. На схеме показано, что уровень ртути в 1-м (левом) колене меньше, чем в среднем. Это означает, что атмосф.давление выше давления газа. На шкале на рисунке видно, что разница давлений составляет 40 см. рт. ст., то есть 400 мм. рт. ст.
  2. Имеющаяся разница давлений означает, что давление газа меньше на эту разницу по сравнению с атмосферным давлением, т.е.: p = 760 — 400 = 360 (мм. рт. ст.).

Ответ: 3

Второй вариант (Камзеева, № 10)

Имеются три сплошных шара одинаковой массы, но изготовленные из разных веществ – из алюминия, стали или свинца. Шары полностью погружают в воду. Выталкивающая сила со стороны воду имеет

  1. наибольшее значение для алюминиевого шара
  2. наибольшее значение для стального шара
  3. наибольшее значение для свинцового шара
  4. одинаковое значение для всех шаров
Алгоритм решения:
  1. Записываем табличные значения для плотности материалов шаров.
  2. Записываем уравнение з-на Архимеда.
  3. Анализируем уравнение и определяем соотношение для выталкивающей силы для шаров.
  4. Записываем ответ.
Решение:
  1. Плотности материалов шаров: ;   ;   .
  2. Согласно з-ну Архимеда, выталкивающая сила равна: . Поскольку по условию шары погружены в жидкость целиком, то V – полный объем шара.
  3. Т.к. во всех 3 случаях жидкость одна и та же (вода), то в уравнении  совпадает для всех шаров. Соответственно, максимальная архимедова сила у того из них, который имеет наибольший объем. Объем выразим из формулы для плотности вещества:  . Учитывая оговорку в условии о том, что у шаров одинаковая масса, делаем вывод: чем меньше плотность вещества шара, тем больше выталкивающая сила. Поскольку наименьшую плотность имеет алюминий, то именно на алюминиевый шар действует максимальная выталкивающая сила.
Читайте также:  В сосуде под поршнем находится 1г азота

Ответ: 1

Третий вариант (Камзеева, № 12)

Сосуд частично заполнили водой и уравновесили на рычажных весах (см. рис.).

В первом случае в сосуд опустили пробковый шарик, во втором случае – стальной шарик. Нарушится ли равновесие весов?

  1. равновесие нарушится только в первом случае
  2. равновесие нарушится только во втором случае
  3. равновесие нарушится в обоих случаях
  4. в обоих случаях равновесие не нарушится
Алгоритм решения:
  1. Анализируем 1-й случай. Делаем вывод о положении весов.
  2. Анализируем 2-й случай. Делаем вывод о положении весов.
  3. Находим верный вариант ответа. Записываем его.
Решение:
  1. В 1-м случае – с пробковым шариком – шарик будет плавать на поверхности воды (т.к. пробковый материал легче воды). При этом, поскольку сосуд заполнен водой целиком, при опускании в нее шарика она по з-ну Архимеда частично выплеснется. Сила тяжести, действующая на шарик, равна весу выплеснувшейся воды, так что вес шарика компенсирует ее. Поэтому равновесие весов сохранится.
  2. Масса стального шарика больше, чем масса воды, которую он выплеснет из сосуда, погрузившись в нее. Это означает, сила тяжести больше веса выплеснувшейся воды, и под действием результирующей этих сил равновесие будет нарушено.
  3. Ситуация, при которой в 1-м случае равновесие не нарушается, а во 2-м нарушается, соответствует варианту ответа 2

Ответ: 2

Даниил Романович | ???? Скачать PDF |

Источник

На поверхность твердого тела, погруженного в жидкость, действуют, как мы знаем, силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть тела и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Опыт подтверждает это предположение.

На весах уравновесили сосуд с водой и затем опустили в него


Рис. 258. Если груз погружен в воду, показание динамометра уменьшается

На весах уравновесили сосуд с водой и затем опустили в него


Рис. 259. Пробка, погруженная в воду, натягивает нитку

Если, например, гирю, подвешенную к крючку динамометра, опустить в воду, то показание динамометра уменьшится (рис. 258).

Равнодействующая сил давления на тело, погруженное в жидкость, называется выталкивающей силой. Выталкивающая сила может быть больше силы тяжести, действующей на тело; например, кусок пробки, привязанный к дну сосуда, наполненного водой, стремясь всплыть, натягивает нитку (рис. 259). Выталкивающая сила возникает и в случае частичного погружения тела. Кусок дерева, плавающий на поверхности воды, не тонет именно благодаря наличию выталкивающей силы, направленной вверх.

Если тело, погруженное в жидкость, предоставить самому себе, то оно тонет, остается в равновесии или всплывает на поверхность жидкости в зависимости от того, меньше ли выталкивающая сила силы тяжести, действующей на тело, равна ей или больше ее. Выталкивающая сила зависит от рода жидкости, в которую, погружено тело. Например, кусок железа тонет в воде, но плавает в ртути; значит, в воде выталкивающая сила, действующая на этот кусок меньше, а в ртути — больше силы тяжести.

Найдем выталкивающую силу, действующую на твердое тело, погруженное в жидкость.

На весах уравновесили сосуд с водой и затем опустили в него


Рис. 260. а) Тело находится в жидкости, б) Тело заменено жидкостью

Выталкивающая сила, действующая на тело (рис. 260 а), есть равнодействующая сил давления жидкости на его поверхность. Представим себе, что тело удалено и его место занято той же жидкостью (рис. 260, б). Давление на поверхность такого мысленно выделенного объёма будет таким же, каким было давление на поверхность самого тела. Значит, и равнодействующая сила давления на тело (выталкивающая сила) равна равнодействующей сил давления на выделенный объем жидкости. Но выделенный объем жидкости находится в равновесии. Силы, действующие на него, — это сила тяжести

 и выталкивающая сила

 (рис. 261, а). Значит, выталкивающая сила равна по модулю силе тяжести, действующей на выделенный объем жидкости, и направлена вверх. Точкой приложения этой силы должен быть центр тяжести выделенного объема. В противном случае равновесие нарушилось бы, так как сила тяжести и выталкивающая сила образовали бы пару сил (рис. 261, б). Но, как уже сказано, выталкивающая сила для выделенного объема совпадает с выталкивающей силой тела. Мы приходим, таким образом, к закону Архимеда:

Выталкивающая сила, действующая на тело, погруженное в жидкость, равна по модулю силе тяжести, действующей на жидкость в объеме, занимаемом телом (вытесненный объем), направлена вертикально вверх и приложена в центре тяжести этого объема. Центр тяжести вытесненного объема называют центром давления.

На весах уравновесили сосуд с водой и затем опустили в него


Рис. 261. а) Равнодействующая сил давления на поверхность погруженного тела равна силе тяжести, действующей на жидкость, объем которой равен объему тела, б) Если бы точка приложения равнодействующей силы не совпадала с центром тяжести вытесненного объема жидкости, то получилась бы пара сил и равновесие этого объема было бы невозможным

Для тела, имеющего простую форму, можно вычислить выталкивающую силу, рассмотрев силы давления на его поверхность. Пусть, например, тело, погруженное в жидкость, имеет форму прямого параллелепипеда и расположено так, что две его противолежащие грани горизонтальны (рис. 262). Площадь его основания обозначим через

, высоту — через

, а расстояние от поверхности до верхней грани — через

.

Равнодействующая сил давления жидкости составляется из сил давления на боковую поверхность параллелепипеда и на его основания. Силы действующие на боковые грани, взаимно уничтожаются, так как для противолежащих граней силы давления равны по модулю и противоположны по направлению. Давление на верхнее основание равно

, на нижнее основание равно

. Следовательно, силы давления на верхнее и на нижнее основания равны соответственно

,

причем сила

 направлена вниз, а сила

 — вверх. Таким образом, равнодействующая

 всех сил давления на поверхность параллелепипеда (выталкивающая сила) равна разности модулей сил

 и

:

,

и направлена вертикально вверх. Но

 — это объем параллелепипеда, а

 — масса вытесненной телом жидкости. Значит, выталкивающая сила действительно равна по модулю силе тяжести, действующей на вытесненный объем жидкости.

На весах уравновесили сосуд с водой и затем опустили в него


Рис. 262. К вычислению выталкивающей силы

На весах уравновесили сосуд с водой и затем опустили в него


Рис. 263. Опытная проверка закона Архимеда при помощи «ведерка Архимеда»

Если тело, подвешенное к чашке весов, погрузить в жидкость, то весы показывают разность между весом тела и выталкивающей силой, т. е. весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.

Для иллюстрации справедливости этого вывода сделаем следующий опыт (рис. 263): пустое ведерко

 («ведерко Архимеда») и сплошной цилиндр

, имеющий объем, в точности равный вместимости ведерка, подвесим к динамометру. Затем, подставив сосуд с водой, погрузим цилиндр в воду; равновесие нарушится, и растяжение динамометра уменьшится. Если теперь наполнить ведерко водой, то динамометр снова растянется до прежней длины. Потеря в весе цилиндра как раз равна весу воды в объеме цилиндра.

Читайте также:  Что есть любовь сосуд она в котором пустота

По закону равенства действия и противодействия выталкивающей силе, с которой жидкость действует на погруженное тело, соответствует сила, с которой тело действует на жидкость. Эта сила направлена вертикально вниз и равна весу жидкости, вытесненной телом. Следующий опыт демонстрирует сказанное (рис. 264). Неполный стакан с водой уравновешивают на весах. Затем в стакан погружают тело, подвешенное на штативе; при этом чашка со стаканом опускается, и для восстановления равновесия приходится добавить на другую чашку гирю, вес которой равен весу воды, вытесненной телом.

На весах уравновесили сосуд с водой и затем опустили в него


Рис. 264. Вес гири, которую нужно положить на левую чашку весов, равен весу воды, вытесненной телом

160.1.
Найдите выталкивающую силу, действующую на погруженный в воду камень массы 3 кг, если его плотность равна

.

160.2.
Куб с ребром 100 мм погружен в сосуд, наполненный водой, поверх которой налит керосин так, что линия раздела обеих жидкостей проходит посередине ребра куба. Найдите выталкивающую силу, действующую на куб. Плотность керосина равна

.

160.3
. Кусок пробки массы 10 г, обмотанный медной проволокой с поперечным сечением

, остается в равновесии в воде, не погружаясь и не всплывая (табл. 1). Найдите длину проволоки.

160.4.
Что произойдет с весами, находящимися в равновесии, если в стакане с водой, стоящий на чашке весов, погрузить палец, не прикасаясь пальцем ни к дну, ни к стенкам стакана?

160.5.
К чашкам весов подвешены на нитках кусок меди и кусок железа массы 500 г каждый (табл. 1). Нарушится ли равновесие, если медь погрузить в воду, а железо — в керосин плотности

. Гирю какой массы и на какую чашку весов нужно поставить, чтобы восстановить равновесие?

Источник

605. В какой воде и почему легче плавать: в морской или речной?
Легче плавать в морской воде, так как на тело, погруженное в морскую воду будет действовать большая выталкивающая сила из-за того, что плотность морской воды больше плотности речной воды.

606. К чашам весов подвешены два одинаковых железных шарика (рис. 183). Нарушится ли равновесие, если шарики опустить в жидкость? Ответ объясните.
Равновесие весов нарушится, так как архимедовы силы, действующие на шарики, будут различны. Перевесит чаша с шариком, погруженным в керосин, так как на нее будет действовать меньшая выталкивающая сила.

607. В сосуд погружены три железных шарика равных объемов (рис. 184). Одинаковы ли силы, выталкивающие шарики? (Плотность жидкости вследствие ничтожной сжимаемости на любой глубине считать одинаковой.)
Выталкивающие силы, действующие на шарики, не зависят от глубины погружения и поэтому будут равны (рис. 184)

608. Свинцовая дробинка опускается с постоянной скоростью на дно сосуда, наполненного маслом. Какие силы действуют на дробинку?
На дробинку действуют сила тяжести, выталкивающая сила и сила вязкого трения. Эти силы скомпенсированы.

609. К чашам весов подвешены две гири равного веса: фарфоровая и железная. Нарушится ли равновесие весов, если гири опустить в сосуд с водой?
При одинаковом весе гирь объем железной гирьки будет меньше объема фарфоровой, так как плотность железа больше. Поэтому, если гири опустить в сосуд с водой, на фарфоровую будет действовать большая выталкивающая сила, и железная гиря перевесит.

610. В сосуде три жидкости: слегка подкрашенная вода, растворитель (четыреххлористый углерод) и керосин. Укажите на порядок расположения этих жидкостей. (Плотность растворителя 1595 кг/м3.)
Снизу вверх: четыреххлористый углерод, вода, керосин.

611. Почему горящий керосин нельзя тушить водой?
Потому что вода будет опускаться вниз и не будет закрывать доступ воздуха (необходимого для горения) к керосину.

612. На дне сосуда с водой лежат одинаковой массы шары: чугунный и железный. Одинаковое ли давление на дно сосуда производят эти шары?
Сила давления, оказываемая чугунным шаром, будет меньше, так как на него будет действовать большая выталкивающая сила, так как плотность чугуна меньше плотности железа. Если площади соприкосновения с дном одинаковы, то давление, оказываемое железным шаром, будет больше.

613. На поверхности воды плавают бруски из дерева, пробки и льда (рис. 185). Укажите, какой брусок пробковый, а какой из льда.
3 — брусок из пробки, 1 — брусок изо льда, так как плотность пробки наименьшая из заданных веществ, льда — наибольшая.

614. Березовый и пробковый шарики равного объема плавают на воде. Какой из них глубже погружен в воду? Почему?
Так как плотность березового шарика больше плотности пробкового, то он глубже будет погружен в воду.

615. Для отделения зерен ржи от ядовитых рожков спорыньи их смесь высыпают в воду. Зерна ржи и спорыньи в ней тонут. Затем в воду добавляют соль. Рожки начинают всплывать, а рожь остается на дне. Объясните это явление.
Объясняется это явление тем, что плотность рожков спорыньи меньше плотности соленой воды, а плотность ржи — больше.

616. В сосуд, содержащий воду, керосин и жидкий растворитель (четыреххлористый углерод, плотность которого равна 1595 кг/м3), опущены три шарика: парафиновый, пробковый и стеклянный. Как расположены шарики?
Пробковый шарик будет плавать на поверхности керосина, парафиновый — на границе вода — керосин, а стеклянный покоиться на дне сосуда.

617. В сосуде с водой (при комнатной температуре) плавает пробирка (рис. 186). Останется ли пробирка на такой же глубине, если воду слегка подогреть; охладить? (Увеличение объема пробирки при нагревании и охлаждении не учитывать. Охлаждение производить при температуре не ниже 4 °С.)
При нагревании воды пробирка начнет двигаться вниз, при охлаждении — вверх. Объясняется это тем, что плотность воды при нагревании уменьшается, а при охлаждении возрастает.

618. В сосуд с водой опущены три одинаковые пробирки с жидкостью (рис. 187). На какую из пробирок действует наибольшая выталкивающая сила? (Плотность воды на всей глубине считать одинаковой.) Ответ обоснуйте.
На вторую и третью пробирки действуют одинаковые по величине выталкивающие силы, равные весу вытесненной ими воды. На первую пробирку действует меньшая выталкивающая сила, так как вес вытесненной ей воды меньше, чем вес воды, вытесненной второй или третьей пробиркой.

619. На рисунке 188 изображен поплавок, который можно использовать как весы. Объясните, как действуют такие весы.
Поплавок будет погружаться в воду пропорционально нагружаемому весу. Поэтому его можно использовать как весы.

620. Пробирка, в которой находится брусок пластилина, плавает в воде (рис. 189, а). Изменится ли глубина погружения пробирки в воду, если пластилин вынуть и подклеить ко дну (рис. 189, 6)1 Если изменится, то как? Ответ объясните.
Глубина погружения пробирки не изменится, так как по-прежнему будет вытесняться количество воды, равное весу пробирки и пластилина. Если же пластилин отвалится и утонет, то глубина погружения пробирки уменьшится.

621. Стальной брусок подвешен к пружине и опущен в воду (рис. 190). С одинаковой ли силой давит вода на верхнюю и нижнюю поверхности бруска? Ответ обоснуйте.
Давление на нижнюю поверхность бруска будет больше, чем на верхнюю. Поэтому и сила давления на нижнюю поверхность бруска будет больше.

Читайте также:  В воду опущен сосуд имеющий форму

622. Подвешенный на нити стальной брусок погружен в воду (рис. 190). Назовите взаимодействующие тела и силы, действующие на брусок. Изобразите эти силы графически.
Брусок взаимодействует с Землей, пружиной и водой. Силы, действующие на брусок: сила тяжести, направленная вниз; сила Архимеда и сила упругости нити, направленные вверх. Сила тяжести равна по модулю сумме сил Архимеда и упругости нити.

623. Деревянный шар плавает на воде (рис. 191). Назовите силы, действующие на шар. Изобразите эти силы графически.
На шар действуют сила тяжести, направленная вниз, и сила Архимеда, направленная вниз. Сила тяжести равна по модулю силе Архимеда.

624. Стальной брусок, вес которого 15,6 Н, погрузили в воду (рис. 190). Определите значение и направление силы натяжения пружины.

26. Закон Архимеда

625. Вычислите выталкивающую силу, действующую на гранитную глыбу, которая при полном погружении в воду вытесняет ее некоторую часть. Объем вытесненной воды равен 0,8 м3.

26. Закон Архимеда

626. Железобетонная плита размером 3,5×1,5×0,2 м полностью погружена в воду. Вычислите архимедову силу, действующую на плиту.

26. Закон Архимеда

627. Железобетонная плита размером 4×0,3×0,25 м погружена в воду на половину своего объема. Какова архимедова сила, действующая на нее?

26. Закон Архимеда

628. Один брусок имеет размер 2x5x10 см, а соответствующий размер другого бруска в 10 раз больше (0,2×0,5×1 м). Вычислите, чему будут равны архимедовы силы, действующие на эти бруски при полном погружении их в пресную воду, в керосин.

26. Закон Архимеда

629. Плавающий на воде деревянный брусок вытесняет воду объемом 0,72 м3, а будучи погруженным в воду целиком — 0,9 м3. Определите выталкивающие силы, действующие на брусок. Объясните, почему различны эти силы.

26. Закон Архимеда

630. Определите показания пружинных весов при взвешивании в воде тел объемом 100 см3 из алюминия, железа, меди, свинца.

26. Закон Архимеда

631. Определите, что покажут пружинные весы, если тела объемом 100 см3 из алюминия, железа, свинца взвешивать в керосине.

26. Закон Архимеда

632. Чему равна архимедова сила, действующая в воде на тела объемом 125 см3 из стекла, пробки, алюминия, свинца?

26. Закон Архимеда

633. Пробирку поместили в мензурку с водой. Уровень воды при этом повысился от деления 100 см3 до деления 120 см3. Сколько весит пробирка, плавающая в воде?

26. Закон Архимеда

634. На сколько гранитный булыжник объемом 0,004 м3 будет легче в воде, чем в воздухе?

26. Закон Архимеда

635. Какую силу надо приложить, чтобы поднять под водой камень массой 30 кг, объем которого 0,012 м3?

26. Закон Архимеда

636. Брусок размером 20х 10×5 см может занимать в воде указанные на рисунке 192 положения. Докажите, что на него действует одна и та же выталкивающая сила.
Сила Архимеда равна весу жидкости, вытесненной телом, и не зависит от ориентации тела в жидкости.

637. До какого уровня поднимется вода в мензурке, если в ней будет плавать брусок; шар (рис. 193)?

26. Закон Архимеда

638. Масса пробкового спасательного круга равна 4,8 кг. Определите подъемную силу этого круга в пресной воде.

26. Закон Архимеда

639. Какой максимальной подъемной силой обладает плот, сделанный из 10 бревен объемом по 0,6 м3 каждое, если плотность дерева 700 кг/м3?

26. Закон Архимеда

640. Плот состоит из 12 сухих еловых брусьев. Длина каждого бруса 4 м, ширина 30 см и толщина 25 см. Можно ли на этом плоту переправить через реку автомашину весом 10 кН?

26. Закон Архимеда

641. Прямоугольная баржа длиной 5 м и шириной 3 м после загрузки осела на 50 см. Определите вес груза, принятого баржей.

26. Закон Архимеда

642. Судно, погруженное в пресную воду до ватерлинии, вытесняет воду объемом 15 000 м3. Вес судна без груза равен 5 • 106 Н. Чему равен вес груза?

26. Закон Архимеда

643. После разгрузки баржи ее осадка в реке уменьшилась на 60 см. Определите вес груза, снятого с баржи, если площадь сечения баржи на уровне воды равна 240 м2.

26. Закон Архимеда

644. Площадь сечения теплохода на уровне воды равна 2000 м2. Сколько нужно добавить груза, чтобы теплоход погрузился в морской воде еще на 1,5 м, считая, что борта его на данном уровне вертикальны?

26. Закон Архимеда

645. Сколько воды вытесняет плавающий деревянный брус длиной 3 м, шириной 30 см и высотой 20 см? (Плотность дерева 600 кг/м3.)

26. Закон Архимеда

646. Площадь льдины 8 м2, толщина 25 см. Погрузится ли она целиком в пресную воду, если на нее встанет человек, вес которого равен 600 Н?

26. Закон Архимеда

647. Какой минимальный объем должна иметь подводная часть надувной лодки массой 7 кг, чтобы удержать на воде юного рыболова, вес которого равен 380 Н?

26. Закон Архимеда

648. Известно, что масса мраморной плиты равна 40,5 кг. Какую силу надо приложить, чтобы удержать эту плиту в воде?

26. Закон Архимеда

649. Какую силу надо приложить, чтобы удержать под водой кусок пробкового дерева, масса которого равна 80 г?

26. Закон Архимеда

650. Плавающее тело вытесняет керосин объемом 120 см3. Какой объем воды будет вытеснять это тело? Определите массу тела.

26. Закон Архимеда

651. Используя данные рисунка 194, определите плотность камня.

26. Закон Архимеда

652. Было установлено, что при полном погружении куска меди в керосин вес его уменьшается на 160 Н. Каков объем этого куска меди?

26. Закон Архимеда

653. На коромысле весов уравновесили два одинаковых сосуда. Нарушится ли равновесие весов, если один сосуд поместить в открытую банку и заполнить ее углекислым газом (рис. 195)?
Равновесие весов нарушится, так как архимедова сила в случае углекислого газа больше, чем в воздухе. Поэтому правый сосуд перевесит.

654. Один из двух одинаковых воздушных шаров заполнили водородом, другой до такого же объема — гелием. Какой из этих шаров обладает большей подъемной силой? Почему?
Большей подъемной силой обладает шар, заполненный водородом, так как плотность водорода меньше плотности гелия.

655. Равны ли массы пятирублёвой монеты и куска пробки, уравновешенные на очень точных и чувствительных весах? Ответ объясните.
Массы пробки и монеты не равны из-за того, что на них действует различная сила Архимеда.

656. Назовите газы, в которых мог бы плавать мыльный пузырь, наполненный воздухом. (Весом пузыря пренебречь.)
Углекислый газ, озон, хлор, аргон, ксенон, криптон, находящиеся при давлении, равном атмосферному.

657. Детский шар объемом 0,003 м3 наполнен водородом. Масса шара с водородом 3,4 г. Какова подъемная сила детского шара?

26. Закон Архимеда

658. Радиозонд объемом 10 м3 наполнен водородом. Какого веса радиоаппаратуру он может поднять в воздухе, если оболочка его весит 6 Н?

26. Закон Архимеда

659. Масса снаряжения воздушного шара (оболочки, сетки, корзины) составляет 450 кг. Объем шара 1600 м3. Вычислите, какой подъемной силой будет обладать этот шар при наполнении его водородом, гелием, светильным газом. (Плотность светильного газа 0,4 кг/м3.)

26. Закон Архимеда

660. Стратостат «СССР», на котором стратонавты поднялись на высоту 19 км, имел объем 24 500 м3. При подъеме в оболочке стратостата было только 3200 м3 водорода. Почему же объем оболочки сделали таким большим?
Объем оболочки стратостата был сделан с бо?