Начальная концентрация сероводорода в сосуде

АВТОРСКАЯ РАЗРАБОТКА

Тема «Химическая термодинамика и кинетика»,
предполагающая изучение условий, влияющих на
скорость химической реакции, встречается в
школьном курсе химии дважды – в 9-м и в 11-м
классах. Однако именно эта тема является одной из
наиболее трудных и достаточно сложной не только
для понимания «средним» учеником, но даже для
изложения некоторыми учителями, особенно
неспециалистами, работающими в сельской
местности, для которых химия является
дополнительным предметом, с учетом часов
которого у педагога набирается ставка, а значит,
и надежда на более-менее приличную зарплату.
В условиях резкого уменьшения числа учащихся в
сельских школах, в силу хорошо известных причин,
учитель вынужден быть универсалом. Посетив 2–3
курса, он начинает преподавание предметов,
зачастую очень далеких от его основной
специальности.
Данная разработка ориентирована в первую
очередь на начинающих учителей и предметников,
вынужденных преподавать химию в условиях
рыночной экономики. Материал содержит задачи на
нахождение скоростей гетерогенных и гомогенных
реакций и увеличения скорости реакции при
повышении температуры. Несмотря на то, что данные
задачи базируются на школьном, хотя и сложном для
усвоения «средним» учеником материале,
целесообразно прорешать несколько из них на
уроке химии в
11-м классе, а остальные предложить на кружковом
или факультативном занятии учащимся, которые
планируют свою дальнейшую судьбу связать с
химией.
Помимо подробно разобранных и снабженных
ответами задач данная разработка содержит
теоретический материал, который поможет учителю
химии, в первую очередь неспециалисту, понять
суть этой сложной темы курса общей химии.
С опорой на предлагаемый материал можно создать
свой вариант урока-лекции, в зависимости от
способностей учащихся в классе, причем
использовать предложенную теоретическую часть
можно при изучении этой темы как в 9-м, так и в 11-м
классе.
Наконец, материал, содержащийся в данной
разработке, будет нелишним разобрать
самостоятельно выпускнику, готовящемуся к
поступлению в вуз, в том числе и в тот, в котором
химия является профилирующим предметом.

Условия, влияющие на скорость
химической реакции

1. Скорость химической реакции зависит от
природы реагирующих веществ.

П р и м е р ы.

Металлический натрий, имеющий щелочную
природу, бурно реагирует с водой с выделением
большого количества теплоты, в отличие от цинка,
имеющего амфотерную природу, который реагирует с
водой медленно и при нагревании:

Порошкообразное железо более энергично
взаимодействует с сильной минеральной соляной
кислотой, чем со слабой органической уксусной
кислотой:

2. Скорость химической реакции зависит от
концентрации реагирующих веществ, находящихся в
растворенном или газообразном состоянии.

П р и м е р ы.

В чистом кислороде сера горит более энергично,
чем на воздухе:

С 30%-м раствором соляной кислоты
порошкообразный магний реагирует более
энергично, чем с 1%-м ее раствором:

3. Скорость химической реакции прямо
пропорциональна площади поверхности
реагирующих веществ, находящихся в твердом
агрегатном состоянии.

П р и м е р ы.

Кусок древесного угля (углерод) очень трудно
поджечь спичкой, но древесная угольная пыль
сгорает со взрывом:

С + О2 = СО2.

Алюминий в виде гранулы не реагирует с
кристаллом йода количественно, но измельченный
йод энергично соединяется с алюминием в виде
пудры:

4. Скорость химической реакции зависит от
температуры, при которой происходит процесс.

П р и м е р.

При повышении температуры на каждые 10 °С
скорость большинства химических реакций
увеличивается в 2–4 раза. Конкретное увеличение
скорости химической реакции определяется особым
температурным коэффициентом (гамма).

Рассчитаем, во сколько раз возрастет скорость
реакции:

2NO + O2 = 2NO2,

если температурный коэффициент равен 3, а температура процесса
возросла с 10 °С до 50 °С.

Изменение температуры составляет:

t = 50 °С – 10 °С
= 40 °С.

Используем формулу:

где –
скорость химической реакции при повышенной
температуре, –
скорость химической реакции при начальной
температуре.

Тогда

Следовательно, скорость химической реакции при
повышении температуры с 10 °С до 50 °С
возрастет в 81 раз.

5. Скорость химической реакции зависит от
присутствия некоторых веществ.

Катализатор – это вещество, ускоряющее ход
химической реакции, но само в процессе реакции не
расходующееся. Катализатор понижает
активационный барьер химической реакции.

Ингибитор – это вещество, замедляющее ход
химической реакции, но само в процессе реакции не
расходующееся.

П р и м е р ы.

Катализатором, ускоряющим ход данной
химической реакции, является оксид марганца(IV).

Катализатором, ускоряющим ход данной
химической реакции, является красный фосфор.

Ингибитором, замедляющим ход данной химической
реакции, является вещество органической природы
– уротропин (гексаметилентетрамин).

Скорость гомогенной химической реакции
измеряется числом молей вещества, вступившего в
реакцию или образовавшегося в результате
реакции за единицу времени в единице объема:

где гомог
– скорость химической реакции в гомогенной
системе, – число
молей одного из вступивших в реакцию или одного
из образовавшихся в результате реакции веществ, V
– объем,
t – время, – изменение числа молей
вещества за время реакции t.

Читайте также:  Можно ли очисть сосуды от бляшек

Поскольку отношение числа молей вещества к
объему системы представляет собой концентрацию с,
то

Следовательно:

Скорость гомогенной химической реакции
измеряется в моль/(л•с).

Учитывая это, можно дать следующее определение:

скорость гомогенной химической реакции
равна изменению концентрации одного из
вступивших в реакцию или одного из образующихся
в результате реакции веществ в единицу времени.

Если реакция протекает между веществами в
гетерогенной системе, то реагирующие вещества
соприкасаются между собой не во всем объеме, а
только на поверхности твердого тела. Так,
например, при горении кусочка кристаллической
серы молекулы кислорода реагируют только с теми
атомами серы, которые находятся на поверхности
кусочка. При измельчении кусочка серы площадь
реагирующей поверхности возрастает, и скорость
горения серы увеличивается.

В связи с этим определение скорости
гетерогенной химической реакции следующее:

скорость гетерогенной химической реакции
измеряется числом молей вещества, вступившего в
реакцию или образовавшегося в результате
реакции в единицу времени на единице
поверхности:

где S – площадь поверхности.

Скорость гетерогенной химической реакции
измеряется в моль/(см2•с).

1. В сосуд для проведения химических реакций
ввели 4 моль оксида азота(II) и избыток кислорода.
Через 10 с количество вещества оксида азота(II)
оказалось равным 1,5 моль. Найдите скорость данной
химической реакции, если известно, что объем
сосуда равен 50 л.

2. Количество вещества метана в сосуде для
проведения химических реакций равно 7 моль. В
сосуд ввели избыток кислорода и смесь взорвали.
Опытным путем было установлено, что через 5 с
количество вещества метана уменьшилось в 2 раза.
Найдите скорость данной химической реакции, если
известно, что объем сосуда равен 20 л.

3. Начальная концентрация сероводорода в
сосуде для сжигания газов была равна 3,5 моль/л. В
сосуд ввели избыток кислорода и смесь взорвали.
Через 15 с концентрация сероводорода составила 1,5
моль/л. Найдите скорость данной химической
реакции.

4. Начальная концентрация этана в сосуде для
сжигания газов была равна 5 моль/л. В сосуд ввели
избыток кислорода и смесь взорвали. Через 12 с
концентрация этана составила 1,4 моль/л. Найдите
скорость данной химической реакции.

5. Начальная концентрация аммиака в сосуде
для сжигания газов была равна 4 моль/л. В сосуд
ввели избыток кислорода и смесь взорвали. Через 3
с концентрация аммиака составила 1 моль/л.
Найдите скорость данной химической реакции.

6. Начальная концентрация оксида углерода(II)
в сосуде для сжигания газов была равна 6 моль/л. В
сосуд ввели избыток кислорода и смесь взорвали.
Через 5 с концентрация оксида углерода(II)
уменьшилась вдвое. Найдите скорость данной
химической реакции.

7. Кусочек серы с площадью реагирующей
поверхности 7 см2 сожгли в кислороде с
образованием оксида серы(IV). За 10 с количество
вещества серы уменьшилось с 3 моль до 1 моль.
Найдите скорость данной химической реакции.

8. Кусочек углерода с площадью реагирующей
поверхности 10 см2 сожгли в кислороде с
образованием оксида углерода(IV). За 15 с
количество вещества углерода уменьшилось с 5
моль до 1,5 моль. Найдите скорость данной
химической реакции.

9. Кубик магния с общей площадью реагирующей
поверхности 15 см2 и количеством вещества
6 моль сожгли в избытке кислорода. При этом через 7
с после начала реакции количество вещества
магния оказалось равным 2 моль. Найдите скорость
данной химической реакции.

10. Брусок из кальция с общей площадью
реагирующей поверхности 12 см2 и
количеством вещества 7 моль сожгли в избытке
кислорода. При этом через 10 с после начала
реакции количество вещества кальция оказалось в
2 раза меньше. Найдите скорость данной химической
реакции.

Решения и ответы

1.

Дано:

1(NO) = 4 моль,

О2 – избыток,

t2 = 10 c,

t1 = 0 c,

2(NO) = 1,5
моль,

V = 50 л.

Найти:

р-ции.

Решение

2NO + О2 = 2NO2.

Используя формулу:

найдем скорость данной химической реакции:

р-ции
= (4 – 1,5)/(50•(10 – 0)) = 0,005 моль/(л•с).

Ответ. р-ции
= 0,005 моль/(л•с).

2.

Дано:

1(CH4) =
7 моль,

О2 – избыток,

t2 = 5 c,

t1 = 0 c,

2(CH4) =
3,5 моль,

V = 20 л.

Найти:

р-ции.

Решение

CH4 + 2О2 = СО2 + 2Н2О.

Используя формулу:

найдем скорость данной химической реакции:

р-ции
= (7 – 3,5)/(20•(5 – 0)) = 0,035 моль/(л•с).

Ответ. р-ции
= 0,035 моль/(л•с).

3.

Дано:

с1(H2S) = 3,5 моль/л,

О2 – избыток,

t2 = 15 c,

t1 = 0 c,

с2(H2S) = 1,5 моль/л.

Найти:

р-ции.

Решение

2H2S + 3О2 = 2SО2 + 2Н2О.

Используя формулу:

найдем скорость данной химической реакции:

р-ции
= (3,5 – 1,5)/(15 – 0) = 0,133 моль/(л•с).

Ответ. р-ции
= 0,133 моль/(л•с).

4.

Дано:

с1(С2H6) = 5 моль/л,

О2 – избыток,

t2= 12 c,

t1 = 0 c,

Читайте также:  Давление газа на стенки сосуда и на помещенные в газ тела

c2(С2H6) = 1,4 моль/л.

Найти:

р-ции.

Решение

2С2H6 + 7О2 = 4СО2 + 6Н2О.

Используя формулу:

найдем скорость данной химической реакции:

р-ции
= (5 – 1,4)/(12 – 0) = 0,3 моль/(л•с).

Ответ. р-ции
= 0,3 моль/(л•с).

5.

Дано:

с1(NH3) = 4 моль/л,

О2 – избыток,

t2 = 3 c,

t1 = 0 c,

с2(NH3) = 1 моль/л.

Найти:

р-ции.

Решение

4NH3 + 3О2 = 2N2 + 6Н2О.

Используя формулу:

найдем скорость данной химической реакции:

р-ции
= (4 – 1)/(3 – 0) = 1 моль/(л•с).

Ответ. р-ции.
= 1 моль/(л•с).

6. Ответ. р-ции.
= 0,6 моль/(л•с).

7.

Дано:

1(S) = 3 моль,

t2 = 10 c,

t1 = 0 с,

2(S) = 1 моль,

S(кус. S) = 7 см2.

Найти:

 р-ции.

Решение

S + О2 = SО2.

Используя формулу:

найдем скорость данной химической реакции:

р-ции
= (3 – 1)/(7•(10 – 0)) = 0,0286 моль/(см2•с).

Ответ. р-ции
= 0,0286 моль/(см2•с).

8. Ответ. р-ции
= 0,0233 моль/(см2•с).

9.

Дано:

1(Мg) = 6
моль,

О2 – избыток,

t2 = 7 c,

t1 = 0 с,

2(Mg) = 2 моль,

S(куб. Мg) = 15 см2.

Найти:

 р-ции.

Решение

2Мg + О2 = 2МgО.

Используя формулу:

найдем скорость данной химической реакции:

р-ции
= (6 – 2)/(15•(7 – 0)) = 0,0381 моль/(см2•с).

Ответ. р-ции
= 0,0381 моль/(см2•с).

10. Ответ. р-ции
= 0,0292 моль/(см2•с).

Литература

Глинка Н.Л. Общая химия, 27-е изд. Под ред.
В.А.Рабиновича. Л.: Химия, 1988; Ахметов Н.С. Общая
и неорганическая химия. М.: Высш. шк., 1981; Зайцев
О.С.
Общая химия. М.: Высш. шк,, 1983; Карапетьянц
М.Х., Дракин С.И.
Общая и неорганическая химия.
М.: Высш. шк., 1981; Корольков Д.В. Основы
неорганической химии. М.: Просвещение, 1982; Некрасов
Б.В.
Основы общей химии. 3-е изд., М.: Химия, 1973; Новиков
Г.И.
Введение в неорганическую химию. Ч. 1, 2.
Минск: Вышэйш. шк., 1973–1974; Щукарев С.А.
Неорганическая химия. Т. 1, 2. М.: Высш. шк., 1970–1974; Шретер
В., Лаутеншлегер К.-Х., Бибрак Х. и др.
Химия.
Справочное изд. Пер. с нем. М.: Химия, 1989; Фельдман
Ф.Г., Рудзитис Г.Е.
Химия-9. Учебник для 9 класса
средней школы. М.: Просвещение, 1990; Фельдман Ф.Г.,
Рудзитис Г.Е.
Химия-9. Учебник для 9 класса
средней школы. М.: Просвещение, 1992.

В.А.Демидов,
учитель химии Синегорской средней школы
(с. Синегорье, Нагорский р-н, Кировская обл.)

Источник

Задачи по теме
«Химическая термодинамика и кинетика»

1. Имеется торт с кремом, срок хранения которого 4 дня при температуре +50C. Вопрос: как долго этот торт можно хранить при температуре +250C? Температурный коэффициент равен 2
2. Химическая реакция протекает в растворе, согласно уравнению: А+В = С. Исходные концентрации:  вещества А – 0,80 моль/л, вещества В – 1,00 моль/л. Через 20 минут концентрация вещества А снизилась до 0, 74 моль/л. Определите среднюю скорость реакции за этот промежуток времени.

3. Определите, как изменится скорость некоторой реакции:

а) при повышении температуры от 10 до 500С; б) при понижении температуры от 100 – 00 С. Температурный коэффициент реакции равен 3

4. Составьте кинетические уравнения для следующих реакций:

А) H2+I2=2HI;    
Б) 2 Fe + 3CI2= 2 FeCI3.

5. Как изменится скорость реакции, имеющей кинетическое уравнение

 v= kCA2CB, если  а) концентрацию вещества А увеличить в 3 раза;

б) концентрацию обоих веществ  увеличить в 2 раза. 

6. Количество вещества метана в сосуде для проведения химических реакций равно 7 моль. В сосуд ввели избыток кислорода и смесь взорвали. Опытным путем было установлено, что через 5 с количество вещества метана уменьшилось в 2 раза. Найдите скорость данной химической реакции, если известно, что объем сосуда равен 20 л.

7. Начальная концентрация сероводорода в сосуде для сжигания газов была равна 3,5 моль/л. В сосуд ввели избыток кислорода и смесь взорвали. Через 15 с концентрация сероводорода составила 1,5 моль/л. Найдите скорость данной химической реакции.

8. Начальная концентрация этана в сосуде для сжигания газов была равна 5 моль/л. В сосуд ввели избыток кислорода и смесь взорвали. Через 12 с концентрация этана составила 1,4 моль/л. Найдите скорость данной химической реакции.

9. Кусочек серы с площадью реагирующей поверхности 7 см2 сожгли в кислороде с образованием оксида серы(IV). За 10 с количество вещества серы уменьшилось с 3 моль до 1 моль. Найдите скорость данной химической реакции.

10. Кусочек углерода с площадью реагирующей поверхности 10 см2 сожгли в кислороде с образованием оксида углерода(IV). За 15 с количество вещества углерода уменьшилось с 5 моль до 1,5 моль. Найдите скорость данной химической реакции.

11. Брусок из кальция с общей площадью реагирующей поверхности 12 см2 и количеством вещества 7 моль сожгли в избытке кислорода. При этом через 10 с после начала реакции количество вещества кальция оказалось в 2 раза меньше. Найдите скорость данной химической реакции.

12.Реакция протекает по уравнению А+В = 2С. Начальная концентрация вещества А равна 0,22 моль/л, а через 10 с — 0,215 моль/л. Вычислите среднюю скорость реакции.

13.Вычислите, во сколько раз увеличится скорость реакции при повышении температуры от 30 до 70 ∘ С, если температурный коэффициент скорости равен 2.

Читайте также:  Любовь или огонь мерцающий в сосуде

14. Вычислите среднюю скорость химической реакции А + В = 2С, если начальная концентрация А = 0,25 моль/л, а через 20 секунд – 0,10 моль/л.
15. При 60 0С скорость реакции равна 2 моль/(). Вычислите скорость этой реакции при 20 0С, если температурный коэффициент равен 2.
16. Температурный коэффициент реакции равен 3. Начальная скорость реакции равна 4 моль/(). Какова будет скорость этой реакции при повышении температуры на 40 0С?
17. Как изменится скорость химической реакции

2SO2(г.) + O2(г.)2SO3(г.) при повышении давления в 2 раза
18. При повышении температуры на 20 0С скорость реакции увеличилась в 16 раз. Найдите температурный коэффициент реакции
19. Во сколько раз увеличится скорость реакции при повышении температуры с 30 0С до 70 0С, если температурный коэффициент равен 2?

Источник

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1о.

Начальная концентрация сероводорода в сосуде

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS   +   2HCl   →   FeCl2   +   H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S  +  H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми  сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

2CrCl3  +  3Na2S  +  6H2O  →   2Cr(OH)3  +  3H2S↑  +  6NaCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S  +  2NaOH  →   Na2S   +  2H2O
H2S  +  NaOH → NaНS   +  H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S   +   O2    →   2S    +   2H2O

В избытке кислорода:

2H2S   +   3O2  →   2SO2  +   2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S  +  Br2   →  2HBr  +   S↓

H2S  +  Cl2   →  2HCl  +   S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S   +  4Cl2   +   4H2O →  H2SO4  +  8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S  +  2HNO3(конц.)  →  S  +  2NO2  +  2H2O

При кипячении сера окисляется до серной кислоты:

H2S   +  8HNO3(конц.)  →  H2SO4  +  8NO2   +   4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S  +  SO2  →  3S   +  2H2O

Соединения железа (III) также окисляют сероводород:

H2S  +  2FeCl3  →  2FeCl2  +  S  +  2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S   +   K2Cr2O7   +    4H2SO4    →   3S    +   Cr2(SO4)3   +   K2SO4   +   7H2O

2H2S   +   4Ag  +  O2  →  2Ag2S  +  2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S   +   H2SO4(конц.)  →  S   +   SO2   +   2H2O

Либо до оксида серы (IV):

H2S   +   3H2SO4(конц.)  →  4SO2   +  4H2O

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S   +   Pb(NO3)2   →  PbS   +   2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Источник