Надеть воздушный шарик на сосуд
#хакнем_физика ???? рубрика, содержащая интересный, познавательный контент по физике как для школьников, так и для взрослых ????
Если решая математические задачи, следует руководствоваться только условиями, в том числе и неявно заданными (например: находя градусную меру одного из смежных углов в случаях, когда известна градусная мера другого, непременной частью условия является значение суммы градусных мер смежных углов, равной 180 град.), то при решении физических задач следует учитывать ВСЕ физические явления и процессы, влияющие на результат рассматриваемой в задаче ситуации.
Вот для примера известная и часто встречающаяся во многих учебниках и сборниках задач, в том числе и олимпиадных (и не только для семиклассников) по физике.
ЗАДАЧА
В стакане с водой плавает кусок льда. Изменится ли уровень воды, когда лёд растает?
Прежде чем продолжить чтение, предлагаю читателю дать (хотя бы для себя) обоснованный ответ на вопрос задачи…
В «Сборнике вопросов и задач по физике» [Н.И. Гольдфарб, изд. 2, «Высшая школа», М.: 1969] эта задача, помещённая как часть № 10.7 на стр. 48, на стр.193 приводится ответ:
«Лёд вытесняет воду, вес которой равен весу льда. Когда лёд растает, образуется такое же количество воды, поэтому уровень не изменится».
Такой же ответ приводится и во многих других сборниках…
А вот в популярнейшем и по сей день, выдержавшим множество изданий трёхтомнике «Элементарный учебник физики» под редакцией академика Г.С. Ландсберга [т. I, изд. 7, стереотипное, «Наука», М.: 1971] ответа на эту задачу (№ 162.2, стр. 351) не приводится. И это не случайно!
Что же не учтено в вышеприведённом ответе? Правильно! Не учтено, что при таянии льда вода в стакане охлаждается — именно поэтому мы и бросаем туда кусочек льда!
Вот как должен выглядеть правильный ответ:
«При таянии льда вода в стакане охлаждается. При охлаждении все вещества уменьшаются в объёме. Однако вода, единственная из всех известных веществ, имеет наибольшую плотность при температуре +4 град. С, а это значит, что при дальнейшем охлаждении данная масса воды увеличивается в объёме, что, как мне это было известно из курса природоведения в 5 классе (1961/1962 учебный год), является условием сохранения жизни на Земле, поскольку позволяет достаточно глубоким водоёмам не промерзать до самого дна!).
При этом возможно три варианта развития ситуации:
I. Если температура воды до начала таяния льда была выше 4 град. С и, хотя и понизилась после таяния льда, но осталась выше этой температуры, то уровень воды в стакане уменьшится.
II. Если температура воды до начала таяния льда была ниже 4 град. С, а после таяния льда ещё и уменьшилась, то уровень воды в стакане увеличится.
III. В случае, когда начальная температура воды была выше 4 град. С, а после того как лёд растаял, оказалась ниже этой температуры, то об уровне ничего определённого сказать нельзя — нужны конкретные данные о температуре и массе воды и льда, чтобы дать точный ответ на вопрос задачи!».
С этой задачей связана для меня одна интересная история.
Лет 15 назад во дворе дома, в котором я живу, ко мне с грустным выражением лица подошёл паренёк по имени Серёжа и попросил помочь подготовиться к предстоящей ему завтра апелляции по физике в нашем Политехническом институте (ныне Технический университет).
Поскольку времени было слишком мало, то я ограничился советом: если, по его мнению, апелляция пройдёт не очень удачно, и надежды исправить тройку на вступительном экзамене не будет, то попросить экзаменатора ответить на вопрос этой задачи и заставил его дословно вызубрить приведённый выше ответ и даже отработал с ним интонацию изложения этого ответа. На следующий вечер он подошёл ко мне с достаточно счастливым видом.
Вот его рассказ, каким я его запомнил:
«Всё получилось так, как Вы и хотели. Апелляцию проводили два человека: профессор и ассистент кафедры общей физики института. Мне выпало общаться с ассистентом, а профессор в это время общался с другим абитуриентом.
В ответ на мою просьбу ответить на мой вопрос ассистент слегка улыбнувшись сказал: «Пожалуйста…».
«После того, как я проговорил условие задачи, ассистент, широко улыбнувшись, произнёс: «Ну, это известная задача. Уровень воды не изменится — это следует из закона Архимеда: плавающий лёд вытесняет массу воды, равную массе льда. Образовавшаяся при таянии льда вода заполнит тот объём, который занимал в воде плавающий лёд…».
«Позвольте с Вами не согласиться», — начал я и затем совершенно спокойно слово в слово пересказал заготовленный нами ответ…
В это время профессор жестом остановил своего абитуриента и стал внимательно меня слушать…
Когда я закончил, возникла небольшая пауза…Профессор, обращаясь к ассистенту спросил: «Что скажешь?».
«Кажется, всё верно», — неуверенно ответил тот, на что профессор сказал, что никогда ещё не слышал столь аргументированного ответа, после чего, уже обращаясь ко мне, добавил: «Молодой человек, мы, к сожалению, не можем поднять Вам оценку сразу на два балла, но четвёрку Вы очевидно заслужили!»».
Мне остаётся лишь добавить, что Серёжа был зачислен студентом!…
Наши читатели могут поделиться своим мнением по поводу решения задачи. Если вам было интересно, не забудьте подписаться на наш канал и хэштег #хакнем_физика
Автор: #себихов_александр 71 год, много лет проработал конструктором-технологом микроэлектронных приборов и узлов в одном из НИИ г. Саратова, затем преподавателем математики и физики.
Другие статьи автора:
Вы читаете контент канала “Хакнем Школа”. Подпишитесь на наш канал, чтобы не терять его из виду.
Источник
Дети всех возрастов обожают опыты и эксперименты. К тому же это может стать весёлой и интересной традицией, объединяющей всю семью. Основатель проекта «Простая наука», телеведущий канала «Карусель» Денис Мохов предлагает увлекательные идеи для опытов с воздушным шариком, которые идеально подойдут детям младшего и среднего школьного возраста.
1. Шарик на вертеле
Что будет, если шарик проткнуть иголкой? Ответ очевиден: он лопнет! Но всегда ли будет именно так? Что если найти у шарика его «сильные» стороны?
Понадобится
- воздушный шарик
- шпажка (или вязальная спица)
- иголка
Описание опыта
- Надуваем шарик несильно и завязываем его.
- Аккуратно и медленно протыкаем иглой самое дно шарика — обычно оно более тёмное, чем бока. Шарик не лопается и не сдувается! Точно так же аккуратно можно проткнуть шарик возле завязанного горлышка.
- Получается «шарик на вертеле».
Объяснение опыта
Шарик не лопается, потому что мы протыкаем его именно в тех местах, где находится наименьшее натяжение. Когда шпажка проходит сквозь стенки шарика, резина плотно её облегает и не даёт воздуху вырваться наружу, поэтому шарик не сдувается.
2. Надуватель для шарика
Многим школьникам нравится играть в химиков, смешивать разные химические реактивы и получать новые вещества. Этим можно заняться прямо сейчас, ведь на кухне полным-полно разных компонентов. Давайте посмотрим, что будет, если в обыкновенный столовый уксус насыпать пищевую соду. Внимание: этот опыт нужно проводить только вместе со взрослыми!
Понадобится
- воздушный шарик
- пластиковая бутылка
- сода
- уксус
Описание опыта
- Насыпаем в шарик две чайные ложки соды.
- В пластиковую бутылку аккуратно наливаем уксус (примерно три-четыре столовые ложки; удобнее всего это делать с помощью воронки).
- Надеваем шарик с содой на горлышко бутылки и высыпаем соду из шарика в уксус.
- Шарик начинает постепенно надуваться.
Объяснение опыта
При смешивании соды и уксуса возникает химическая реакция, в результате которой выделяется углекислый газ. Этого газа становится всё больше и больше, он не может уместиться в бутылке и выходит из неё, попадая в шарик. Именно поэтому шарик и надувается.
3. Шарик-йог
Этот опыт объясняет, как индийским йогам удаётся спать на гвоздях и ходить по стёклам. В этом опыте настоящим йогом может стать хрупкий воздушный шарик.
Понадобится
- воздушный шарик
- ножницы
- картон
- гвозди
Описание опыта
- Надуваем несильно шарик и завязываем его.
- Боковой стороной опускаем шарик на острие гвоздей и слегка надавливаем на него.
- Шарик не лопается.
Объяснение опыта
Если мы прикоснёмся гвоздём к шарику и не будем давить, то шарик не лопнет. Но стоит нам приложить небольшое усилие — шарик лопнет. А если мы приложим шарик к множеству гвоздей, то, чтобы шарик лопнул, нам потребуется приложить гораздо большее усилие, так как оно распределится уже не на один гвоздь, а на множество. Именно поэтому индийские йоги могут спать на гвоздях и ходить по стёклам.
4. В потоке воздуха
Если дунуть на шарик, то он улетит. А что будет, если дуть на него постоянно и с одной и той же скоростью? Давайте попробуем сделать это при помощи обычного фена.
Понадобится
- воздушный шарик
- фен для сушки волос
Описание опыта
- Надуваем шарик и завязываем его.
- «Усаживаем» шарик в поток воздуха и отпускаем.
- Включаем фен и направляем струю воздуха вверх.
- Струя воздуха поднимает шарик вверх, но он не улетает, а удерживается на высоте в воздушном потоке и легко управляется феном.
Объяснение опыта
Струя быстро двигающегося воздуха имеет меньшее давление, чем воздух вокруг неё. Это значит, что она буквально засасывает шарик. Кроме того, по схожим причинам давление воздуха над шариком меньше, чем под ним, и это позволяет шарику не падать.
5. Весёлая регата
С помощью статического электричества можно устроить необычные гонки на воде. Но сначала нужно собрать судно по простой схеме. Получится оригами-лодочка.
Понадобится
- таз с водой или наполненная ею ванна
- шерстяная варежка или шарф
- воздушный шарик
- бумага
Описание опыта
- Сначала надо наполнить таз водой из-под крана (или набрать воды в ванну).
- Опустить кораблик на воду.
- Надуем воздушный шарик.
- Быстрыми движениями потрём шарик об одежду. Если вы не нашли дома шерстяную вещь, можно потереть шарик о волосы.
- Подносим «заряженный» шарик к самодельному судну.
- Оно начинает двигаться.
Объяснение опыта
Потерев шарик о шерстяной шарф, мы зарядили его отрицательно (минус), а шарф — положительно (плюс). В природе «плюс» всегда притягивается к «минусу». Когда к кораблику подносят заряженный шарик, он начинает к нему тянуться. Сила трения на воде незначительна, а само судно лёгкое, поэтому кораблик приходит в движение.
Источник
- Главная
- Вопросы & Ответы
- Вопрос 10241196
более месяца назад
Просмотров : 3
Ответов :
Ваш ответ:
Комментарий должен быть минимум 20 символов
Чтобы получить баллы за ответ войди на сайт
Лучшее из галереи за : неделю месяц все время
Другие вопросы:
Церковная организация для борьбы с еретиками называлась: 1)схизма 2)теократия 3)интердикт 4)инквизиция
более месяца назад
Смотреть ответ
Просмотров : 2
Ответов : 1
мини-сочинение “слёзы животных” во одному из произведений: о чём плачут лошади, хорошее отношение к лошадям , кусака
более месяца назад
Смотреть ответ
Просмотров : 2
Ответов : 1
6*800-800:8 2 и 6*800:(8 2)=
более месяца назад
Смотреть ответ
Просмотров : 2
Ответов :
Какие состязания были: 1) В современных олимпийских играх? 2) В древнегреческих олимпийских играх? Заранее Спасибо!!!
более месяца назад
Смотреть ответ
Просмотров : 2
Ответов : 1
толстой акула жанр тема главная мысль
более месяца назад
Смотреть ответ
Просмотров : 2
Ответов :
Источник
Знакома ли вам ситуация, когда после дня рождения или какого-то другого праздника в доме появляется множество воздушных шаров? Сначала шарики детей радуют, они играют с ними, но вскоре на них перестают обращать внимание и шарики только путаются под ногами. Что с ними сделать, чтобы они не лежали без всякой цели, а принесли пользу? Конечно же, использовать в познавательной деятельности!
Вообще, воздушные шарики – прекрасный материал для демонстрации различных опытов и моделей. Было бы интересно написать книжку, в которой все физические понятия будут объяснятся через них 🙂 Ну а пока я хочу предложить вам провести больше десятка экспериментов из разных областей науки – от термодинамики до космологии, – в которых общим является реквизит: воздушные шары.
1. Фокус с протыканием шарика.
Понадобится надутый воздушный шарик, скотч, металлическая спица или длинное шило.
Обязательно предупредите ребенка, что шарик после этого фокуса хоть и не лопнет, но будет безвозвратно испорчен.
Незаметно для ребенка наклейте кусочки скотча на диаметрально противоположные точки шарика. Лучше будет, если эти точки близки к “полюсам” (т.е. верхушка и самый низ). Тогда фокус может получится даже без скотча.
Объявите, что сейчас проткнете шар, а он не лопнет! И смело втыкайте шило или спицу так, чтобы они проходили через заклеенные скотчем участки.
Секрет фокуса в том, что хотя дырка образуется, но скотч не даст давлению разорвать шарик. А сама спица закроет собой дырочку, не позволяя воздуху выходить из нее.
Материалы для фокуса |
Если воткнуть шило там, где наклеен скотч, шарик не лопнет |
2. Фокус с несгораемым шариком.
Понадобится свечка, один надутый и один новый воздушный шар (этот второй шар надо наполнить водой из-под крана, а потом надуть и завязать так, чтобы вода осталась внутри).
Заранее договоритесь с малышом, что один из шариков лопнет (чтобы не было неприятного сюрприза). Зажгите свечу, поднесите обычный шарик к огню – как только пламя его коснется. он лопнет.
Контрольный экземпляр от огня лопнул |
А теперь “поколдуйте” над вторым шариком и объявите, что он больше не боится огня. Поднесите его к пламени свечи. Огонь будет касаться шара, но с ним ничего не произойдет!
Этот фокус наглядно демонстрирует такое физическое понятие как “теплопроводность”. Секрет фокуса в том, что вода, находящаяся в шарике, “отбирает” все тепло свечи на себя, поэтому поверхность шарика не нагревается до опасной температуры.
Шарик с водой не лопается |
3. Сколько весит воздух?
Дети часто думают, что воздух вокруг нас – это пустота, ничто. Чтобы наглядно объяснить им, что воздух это тоже физическая субстанция, которая имеет определенные свойства, например, вес, можно провести этот опыт. Понадобятся рычажные весы и воздушный шарик. Если дома нет готовых весов, то можно использовать горизонтальную палочку, подвешенную на нитку за середину, или даже одежные “плечики”.
Убедитесь, что весы хорошо уравновешены. После этого к одному концу весов подвесьте на ниточке воздушный шарик. А другой конец уравновесьте подходящим грузом. Столько весит надутый воздухом воздушный шарик (у нас вес шарика равнялся 8 пластмассовым монеткам). После этого выпустите воздух из шарика. Равновесие весов нарушилось. Чтобы его восстановить, надо убрать часть груза (мы убрали одну монетку). Значит, воздух, который был в шарике, весил ровно столько, сколько весил груз, который нам пришлось убрать (т.е. как одна пластмассовая монетка).
1. Уравновешиваем грузиками весы с подвешенным воздушным шаром 2. Выпускаем воздух – груз перетягивает 3. Снова уравновешиваем весы. Разница в грузиках и есть вес воздуха в шаре |
Р.S.Как верно отметил в комментариях Igor, опыт демонстрирует не абстрактный “вес воздуха”, а разницу в весе между сжатым воздухом в шарикеи воздухом в комнате.Малышам это объяснять не обязательно, а вот для более старших детей можно провести аналогичный опыт с надутым и пустым кульком и объяснить разницу в результатах (см. комментарий Игоря).
4. Шарик-магнит.
Понадобится надутый воздушный шарик и маленькие кусочки бумаги.
Потрите шарик о волосы. Поднесите к кусочкам бумаги – они прилипнут на шарик!
Опыт наглядно демонстрирует существование статического электричества. Когда мы трем шарик о волосы, он получает отрицательный электрический заряд. А так как разноименные заряды притягиваются, то к шарику притягиваются и бумажки, у которых есть кроме отрицательного и положительный заряд. Шарик будет притягивать не только бумажки, но и волосы, пылинки, прилипать к стене и даже искривлять тонкую струйку воды из крана.
Наэлектризованный воздушный шарик притягивает кусочки бумаги |
Шарик притягивает волосы |
Наэлектризованный шарик прилипает к стене |
Шарик притягивает струйку воды |
5. Притяжение шариков.
Одноименные электрические заряды отталкиваются, разноименные – притягиваются. Этот физический закон можно продемонстрировать, заряжая шарики от разных материалов. Если оба шарика наэлектризовать трением о волосы, то подвешенные за нитки рядышком, они будут друг от друга отклоняться (трением о волосы мы наэлектризовали шарики так, что они оба приобрели отрицательный заряд). А если один из шариков наэлектризовать о какую-нибудь синтетическую ткань, а другой о волосы, то шарики начнут друг к другу прилипать. Т.е. они получили разный заряд – один шарик положительный, а второй – отрицательный.
Слева шарики отталкиваются (они заряжены одноименно), справа – притягиваются (заряжены разноименно) |
6. Воздушный шарик в качестве реактивного двигателя.
Эта наглядная модель демонстрирует принцип работы реактивных двигателей. Подробно о том, как сделать такую машинку, я писала здесь.
Принцип ее работы в том, что струя воздуха, вырывающаяся из шарика, после того, как его надули и отпустили, толкает машинку в противоположном направлении.
Реактивный двигатель для игрушечной машинки |
7. Пневматический подъемник.
Во многих механизмах используют силу давления воздуха. Ее применяют в насосах, отбойных молотках, кузнечных мехах, станках на заводе и даже в обычной гармошке. Очень простую и наглядную модель пневматического подъемника можно сделать с помощью воздушного шара. Для этого понадобится ненадутый шарик и какой-нибудь груз (мы вместо груза поднимали кузов игрушечного самосвала).
Кладем шарик, сверху него ставим кузов и начинаем надувать шарик. Кузов поднимается!
Пневматический механизм поднимает кузов |
8. Надуваем шарик углекислым газом.
В пластиковую бутылку через воронку насыпаем соду (мы насыпали 2 ст. ложки) и наливаем туда же немного столового уксуса (на глаз). Многим знаком этот опыт: так обычно показывают детям вулкан – в результате бурной химической реакции получается много пены, которая “убегает” из сосуда. Но в этот раз нас интересует не пена (это одна лишь видимость), а то, что получается в ходе этой реакции – углекислый газ. Он невидим. Но мы можем поймать его, если сразу же натянем на горлышко бутылки воздушный шарик. Тогда можно будет увидеть, как выделяющийся углекислый газ надувает шар.
К соде добавляем уксус – в результате химической реакции выделяется углекислый газ, который и надувает шарик |
9. Фокус с надуванием шарика в бутылке.
Подготовьте две пластиковые бутылки и два ненадутых воздушных шара. Все должно быть одинаковым, за исключением того, что в одной бутылке в дне надо сделать незаметное маленькое отверстие. Натяните шарики на горлышки бутылок и заправьте их внутрь. Проследите, чтобы вам досталась бутылка с дырочкой. Предложите устроить соревнование: кто первым надует шарик внутри бутылки? Итог этого соревнования предрешен – ваш партнер не сможет даже чуть-чуть надуть шар, а у вас это прекрасно получится.
Секрет фокуса в том, что для того, чтобы надувать шар в бутылке, понадобится место, куда он будет расширяться. Но вся бутылка уже заполнена воздухом! Поэтому шарику надуваться некуда. Чтобы это получилось, надо сделать в бутылке дырочку, через которую будет выходить лишний воздух.
1. Готовим шарик с бутылкой для фокуса 2. Так выглядит надувание шара в целой бутылке 3. Так выглядит надувание шара в бутылке с проколотым дном |
10. Худеющий и толстеющий шарик.
То, что различные тела и газы расширяются от тепла и сжимаются от холода, можно легко продемонстрировать на примере воздушного шара.
В морозную погоду возьмите с собой на прогулку воздушный шар и там туго надуйте его. Если потом внести этот шарик в теплый дом, то он, скорее всего, лопнет. Это произойдет из-за того, что от тепла воздух внутри шара резко расширится и резина не выдержит давления.
Обратный опыт можно поставить с применением холодильника. Надуйте в теплой комнате воздушный шарик. С помощью портновского метра измерьте его окружность (у нас получилось 80,6 см). После этого положите шарик в холодильник на 20-30 минут. И снова измерьте его окружность. Вы обнаружите, что шарик “похудел” на почти на сантиметр (в нашем опыте он стал 79,7 см). Это произошло из-за того, что воздух внутри шарика сжался и стал занимать меньший объем.
1. Измеряем шарик 2. Кладем в холодильник 3. Достаем из холодильника и измеряем снова |
11. Модель расширения Вселенной
Детям трудно понять тот факт, что наша Вселенная расширяется, но нет никакого центра этого расширения. Какой бы объект мы ни выбрали, остальные объекты от него удаляются во все стороны. Как это может быть, чтобы и от Земли все звезды и планеты “разбегались”, и от далекой Альфа Центавра тоже “разбегались”? Где-то они же все скопятся? Или нет?
Расширение нашей Вселенной можно показать на модели из воздушного шарика. Для этого надо перед тем как надувать шарик, нарисовать на нем несколько звездочек (только очень маленьких, ведь они при надувании сильно увеличатся). Попросите ребенка понаблюдать, что происходит с расстоянием между звездами, пока вы будете надувать воздушный шар. Звезды будут удалятся друг от друга, но так, что от каждой отдельно взятой звезды остальные будут разбегаться в разные стороны. Все от нее и ни одной к ней!
1. Измеряем расстояние от нашей звезды до других звезд 2. После того как шар надули, снова измеряем расстояния. |
12. Барабан из шарика.
Чтобы сделать простейший барабан, надо на консервную банку натянуть мембрану, сделанную из воздушного шарика. Подробнее о том, как его сделать, я писала здесь.
Опыт демонстрирует то, что звук, который мы слышим, получается из-за колебаний воздуха. Мембрана из шарика от удара колышится, эти колебания по воздуху доходят до барабанной перепонки в нашем ухе, которая тоже начинает колебаться, а мозг эти колебания преобразует в сигналы, которые мы воспринимает как “звук”.
Мембрана из шарика создает звуковые колебания |
13. Подслушивающее устройство из шарика.
Приложите надутый воздушный шарик к уху и послушайте – окружающие звуки будут слышны гораздо лучше. Если второй человек будет очень тихо шептать совсем рядом с поверхностью шара, то его голос будет слышаться как довольно громкий.
Дело в том, что в этом опыте воздушный шарик выступает как звуковая линза. Форма его поверхности собирает звуковые волны и направляет их в одну точку.
С помощью шара можно усилить звук |
14. Шарик со стабилизатором.
Для чего летательным аппаратам нужны стабилизаторы легко понять, попробовав запускать вот такой вот воздушный шарик с хвостом. Он ведет себя как маленькое привидение с моторчиком:) Хвост надо так привязать к ненадутому шарику, чтобы его можно было надувать, а потом отпускать. Без хвоста такие шарики безумно мечутся по дому, а с хвостом их полет становится более спокойным и гармоничным. Но, все равно, получается ужасно забавно!
15. Шарик-свисток
Что звуковые волны получаются при колебаниях воздуха мы уже знаем. На этом принципе основана еще одна игрушка из воздушного шарика – свисток. Громко, весело и со смыслом!
Источник