Найдите давление идеального газа на стенку сосуда

Найдите давление идеального газа на стенку сосуда thumbnail

Определение давления идеального газа

Определение

Давление идеального газа – это один из самых важных макроскопических параметров, при помощи которого характеризуют состояние системы в молекулярной физике.

Обозначают давление буквой $p$. Если для известной массы идеального газа определены давление и температура (или объем), то полагают, что состояние термодинамической системы в состоянии равновесия определяется однозначно, так как существующие законы и уравнения молекулярно кинетической теории (МКТ) позволяют все остальные параметры вычислить.

В общем случае давление определяют как:

[p={mathop{lim }_{Delta Sto 0} frac{Delta F_n}{Delta S} }left(1right),]

где $F_n$ проекция силы на нормаль к поверхности S данная сила оказывает воздействие, $Delta S$- площадь поверхности.

Идеальный газ оказывает давление на стенки сосуда, в котором он находится, за счет того, что молекулы этого газа движутся и ударяются о стенки сосуда. Давление идеального газа можно найти, применяя основные положение МКТ. При этом получают, что давление идеального газа равно:

[p=frac{1}{3}nm_0{leftlangle v_{kv}rightrangle }^2left(2right),]

где $m_0$ – масса одной молекулы газа; $n$- концентрация молекул газа; $leftlangle v_{kv}rightrangle =sqrt{frac{1}{N}sumlimits^N_{i=1}{v^2_i}}, N $- количество молекул в объеме газа равном $V$. Уравнение (2) называют основным уравнением МКТ. Его можно записать в другом виде, используя среднюю кинетическую энергию молекул ($leftlangle E_krightrangle $):

[p=frac{2}{3}nleftlangle E_krightrangle left(3right).]

С таким важным термодинамическим параметром как термодинамическая температура давление связывает формула:

[p=nkT left(4right),]

где $k$ – постоянная Больцмана. Уравнение (4) называют уравнением состояния идеального газа.

Если проводить изохорный процесс ($V=const$) с некоторой массой идеального газа, то давление его будет подчинено закону Шарля:

[p_2=p_1frac{T_2}{T_1}left(5right),]

где $p_1$- давление газа имеющего температуру $T_1$.

При проведении изотермического процесса ($T=const$) c постоянной массой некоторого газа поведение давления можно характеризовать, используя уравнение:

Читайте также:  Сосуд для пиров 6 буквы сканворд

[p_1V_1=p_2V_2left(6right).]

В соответствии с законом Дальтона давление смеси газов можно найти как сумму давлений каждого газа:

[p=sumlimits^N_{i=1}{p_i} left(7right),]

где $p_i$ – давление каждого газа в отдельности.

Уравнения МКТ, содержащие давление идеального газа

Уравнение Менделеева – Клапейрона (еще один вариант уравнения состояния):

$pV=frac{m}{mu }RT$(8),

где $frac{m}{mu }=nu $ -количество вещества; $m$ – масса газа; $mu $- молярная масса газа; $R$ – универсальная газовая постоянная.textit{}

Определение работы газа в термодинамике:

[A=intlimits^{V_2}_{V_1}{pdV}left(9right).]

Соответственно, первое начало термодинамики для идеального газа в дифференциальном виде запишем как:

[delta Q=pdV+frac{i}{2}nu RdTleft(10right),]

где $i$ – число степеней свободы молекулы газа; $delta Q$ – элементарное количество теплоты, которое получает идеальный газ; $frac{i}{2}nu RdT=dU$ – изменение внутренней энергии термодинамической системы.textit{}

Примеры задач с решением

Пример 1

Задание. В идеальном газе проводят процесс, при котором $p=frac{AU}{V},$ где $U$ – внутренняя энергия газа; $A=const$ для определенного газа. Сравните коэффициенты пропорциональности $A$, если в первом случае газ одноатомный, во втором двух атомный. textit{}

Решение. Внутренняя энергия идеального газа для любого процесса равна:

[U=frac{i}{2}nu RT left(1.1right).]

Состояние идеального газа описывает уравнение Менделеева – Клайперона:

[pV=nu RT left(1.2right).]

Подставим правую часть уравнения, которое описывает заданный в условиях задачи процесс ($p=frac{AU}{V}$) вместо давления в (1.2), имеем:

[frac{AU}{V}V=nu RT left(1.3right).]

Получим из (1.3), что внутренняя энергия вычисляется как:

[U=frac{1}{A}nu RTleft(1.4right).]

Сравним выражения для внутренней энергии (1.1) и (1.4), имеем:

[frac{i}{2}=frac{1}{A}left(1.5right).]

Для одноатомного газа $i=3$; для двухатомного газа (без учета колебаний молекул) $i=5$.

[frac{3}{2}=frac{1}{A_1};; frac{5}{2}=frac{1}{A_2}to frac{A_2}{A_1}=frac{3}{2}cdot frac{2}{5}=frac{3}{5}.]

Ответ. $frac{A_2}{A_1}=frac{3}{5}$

Пример 2

Задание. На рис.1 представлены процессы, проводимые с постоянной массой идеального газа, укажите, как изменяются давления в процессах?

Давление идеального газа, пример 1

Решение. Уравнение процесса можно аналитически описать уравнением:

Читайте также:  Что такое кате сосудов

[V(T)=AT-B left(2.1right),]

где $A$ и $B$ положительные постоянные величины.

Состояние газа определим при помощи уравнения Менделеева – Клапейрона:

[pV=nu RT left(2.2right).]

Вместо объема подставим уравнение процесса в (2.2):

[pleft(AT-Bright)=nu RTleft(2.3right).]

Раздели обе части (2.3) на температуру:

[frac{pleft(AT-Bright)}{T}=nu Rto pleft(A-frac{B}{T}right)=nu Rto p=frac{nu R}{A-frac{B}{T}} left(2.4right).]

Из уравнения (2.4) следует, что при увеличении температуры $frac{B}{T}$ уменьшается, следовательно, знаменатель дроби правой части выражения (2.4) увеличивается, значит, давление уменьшается.

Ответ. Давление в заданном процессе уменьшается.

Читать дальше: диэлектрический гистерезис.

Источник