Нервная регуляция тонуса сосудов
Оглавление темы “Сосудистый тонус. Эндотелий сосудов. Кровоснабжение головного мозга. Кровоснабжение сердца ( миокарда ).”: Нервная регуляция тонуса сосудов. Парасимпатические воздействия на сосуды. Влияние симпатической нервной системы на сосуды.Нейрогенное сужение сосудов осуществляется путем возбуждения адренергических волокон, которые действуют на гладкие мышцы сосудов путем высвобождения в области нервных окончаний медиатора адреналина. Торможение импульсов в симпатических нервных волокнах влияет на гладкие мышцы сосудов путем снижения их тонуса. Парасимпатические вазодилататорные волокна холинергической природы доказаны для группы волокон сакрального отдела, идущих в составе п. pelvicus. В блуждающих нервах отсутствуют сосудорасширяющие волокна для органов брюшной полости. В скелетных мышцах доказано наличие симпатических вазодилататорных нервных волокон, которые являются холинергическими. Внутрицен-тральный путь этих волокон начинается в моторной зоне коры мозга. Тот факт, что эти волокна могут возбуждаться при стимуляции двигательной области коры мозга, позволяет предположить, что они вовлекаются в системную реакцию, способствующую увеличению кровотока в скелетных мышцах в начале их работы. Гипоталамическое представительство этой системы волокон указывает на их участие в эмоциональных реакциях организма. У теплокровных отсутствует «дилататорный» центр с особой системой «дилататорных» волокон. Вазомоторные сдвиги бульбоспинального уровня осуществляются исключительно путем изменения числа возбужденных констрикторных волокон и частоты их разрядов, т. е. сосудодвигательные эффекты возникают только путем возбуждения или торможения констрикторных волокон симпатических нервов. Адренергические волокна при электрической стимуляции могут передавать импульсацию с частотой 80—100 в 1 с. Однако в физиологическом покое частота импульсов в них составляет 1—3 в 1 с и может увеличиваться при прессорном рефлексе только до 12—15 имп/с. Из сказанного ясно, что практически весь диапазон величин сосудистых реакций, которые можно получить при электрической стимуляции нервов, соответствует увеличению частоты импульсов всего лишь на 1—12 в 1 мин, что вегетативная нервная система в норме функционирует при частоте разрядов значительно меньшей 10 имп/с. Электрическая стимуляция соответствующих симпатических волокон приводит к достаточно сильному повышению сопротивления сосудов скелетных мышц, кишечника, селезенки, кожи, печени, почки, жира; эффект выражен слабее в сосудах мозга, сердца. В сердце и почке этой вазоконстрикции противостоят местные вазодилататорные влияния, опосредованные активацией функций основных или специальных клеток ткани, одновременно запускаемые нейрогенным адренергическим механизмом. В результате такой суперпозиции двух механизмов выявление адренергической нейрогенной вазоконстрикции в сердце и почке составляет более сложную, чем для других органов, задачу. Общая закономерность все же состоит в том, что во всех органах стимуляция симпатических волокон вызывает активацию гладких мышц сосудов, иногда маскируемую одновременными или вторичными тормозными эффектами. При рефлекторном возбуждении симпатических нервных волокон, как правило, имеет место повышение сопротивления сосудов всех изученных областей (рис. 9.22). При торможении симпатической нервной системы (рефлексы с полостей сердца, депрессорный синокаротидный рефлекс) наблюдается обратный эффект. Различия между рефлекторными вазомоторными реакциями органов в основном количественные, качественные — обнаруживаются значительно реже. Одновременная параллельная регистрация сопротивления в различных сосудистых областях свидетельствует о качественно однозначном характере активных реакций сосудов при нервных влияниях. Учитывая небольшую величину рефлекторных констрикторных реакций сосудов сердца и мозга, можно полагать, что в естественных условиях кровоснабжения этих органов симпатические вазоконстрикторные влияния наних нивелируются метаболическими и общими гемодинамическими факторами, в результате чего конечным эффектом может быть расширение сосудов сердца и мозга. Этот суммарный дилататорный эффект обусловлен сложным комплексом влияний на указанные сосуды, а не только нейро-генных. Кроме того, эти отделы сосудистой системы обеспечивают обмен веществ в жизненно важных органах, поэтому слабость вазоконстриктор-ных рефлексов в этих органах обычно интерпретируют тем, что выраженные симпатические констрикторные влияния на сосуды мозга и сердца биологически нецелесообразно, так как это значительно уменьшало бы их кровоснабжение. – Также рекомендуем “Влияние простогландинов на сосуды. Воздействие кининов на стенку сосуда.” |
Источник
Сосудистый тонус – это некоторое постоянное напряжение сосудистых стенок, определяющее просвет сосуда.
Регуляция сосудистого тонуса осуществляется местными и системными нервными и гуморальными механизмами.
Благодаря автоматии некоторых гладкомышечных клеток стенок сосудов, кровеносные сосуды, даже в условиях их денервации, имеют исходный (базальный) тонус, для которого характерна саморегуляция.
Так, при увеличении степени растяжения гладкомышечных клеток базальный тонус увеличивается (особенно выражено в артериолах).
На базальный тонус наслаивается тонус, который обеспечивается нервными и гуморальными механизмами регуляции.
Основная роль принадлежит нервным механизмам, которые рефлекторно регулируют просвет кровеносных сосудов.
Усиливает базальный тонус постоянный тонус симпатических центров.
Нервная регуляция осуществляется вазомоторами, т.е. нервными волокнами, которые оканчиваются в мышечных сосудах (за исключением обменных капилляров, где нет мышечных клеток). Вазомоторы относятся к вегетативной нервной системе и подразделяются на вазоконстрикторы (суживают сосуды) и вазодилататоры (расширяют).
Чаще вазоконстрикторами являются симпатические нервы, поскольку их перерезка сопровождается расширением сосудов.
Симпатическую вазоконстрикцию относят к системным механизмам регуляции просвета сосудов, т.к. она сопровождается повышением АД.
Сосудосуживающее влияние не распространяется на сосуды головного мозга, легких, сердца и работающих мышц.
При возбуждении симпатических нервов сосуды этих органов и тканей расширяются.
К вазоконстрикторам относятся:
1. Симпатические адренергические нервные волокна, иннервирующие сосуды кожи, органов брюшной полости, части скелетных мышц (при взаимодействии норадреналина с а-адренорецепторами). Их центры располагаются во всех грудных и трех верхних поясничных сегментах спинного мозга.
2. Парасимпатические холинергические нервные волокна, идущие к сосудам сердца. Сосудорасширяющие нервы чаще входят в состав парасимпатических нервов. Однако сосудорасширяющие нервные волокна обнаружены и в составе симпатических нервов, а также задних корешков спинного мозга.
К вазодилататорам (их меньше, чем вазоконстрикторов) относятся:
1. Адренергические симпатические нервные волокна, иннервирующие сосуды.
– части скелетных мышц (при взаимодействии норадреналина с b-адpеноpецептоpами);
– сердца (при взаимодействии норадреналина с b1-адpеноpецептоpами).
2. Холинергические симпатические нервные волокна, иннервирующие сосуды некоторых скелетных мышц.
3. Холинергические парасимпатические волокна сосудов слюнных желез (подчелюстных, подъязычных, околоушных), языка, половых желез.
4. Метасимпатические нервные волокна, иннервирующие сосуды половых органов.
5. Гистаминергические нервные волокна (относят к регионарным или местным механизмам регуляции).
Вазомоторный центр – это совокупность структур различных уровней ЦНС, обеспечивающих регуляцию кровоснабжения.
Спинальный уровень регуляции предусматривает замыкание рефлексов, регулирующих сосудистый тонус, с афферентных спинальных нервов на преганглионарные спинальные нейроны (на уровне спинного мозга).
Так если перерезать спинной мозг под продолговатым, то уровень артериального давления сохраняется.
Это означает, что спинной мозг, независимо от вышележащих отделов ЦНС, может осуществлять регионарные вазомоторные рефлексы, поддерживающие сосудистый тонус.
Тонус симпатических центров спинного мозга находится под контролем сосудодвигательного центрапродолговатого мозга, который состоит из трех отделов: прессорного, депрессорного и кардиоингибирующего. вазомоторный центр продолговатого мозга выполняет роль автоматического саморегулирующего центра, обеспечивающего нормальный уровень давления в крупных магистральных сосудах.
Ему также отводится роль в осуществлении рефлекторных реакций при поступлении афферентной информации от рецепторов легких, аортальной и каротидной зон.
Он отвечает за формирование «срочных» ответов сердечно-сосудистой системы, связанных с гипоксией, гиперкапнией и усиленной мышечной работой.
Свои влияния на тонус сосудов бульбарный центр осуществляет через ядра черепно-мозговых нервов или через симпатические нейроны спинного мозга.
Гипоталамический уровень регуляции обеспечивает адаптивные реакции сердечно-сосудистой системы.
Он подключается к регуляции стабилизации давления крови при снижении тонуса бульбарного вазомоторного центра, выполняя функцию «дублера».
В гипоталамусе есть прессорные и депрессорные зоны, а также «защитная» зона, которая оказывает влияние на различные вегетативные реакции, в том числе и на кровообращение. Корковый уровень регуляции предусматривает модулирующее влияние на подкорковые вазомоторные центры и подтверждается кардиоваскулярными условными рефлексами, изменением сосудистого тонуса при эмоциональных состояниях, возможностью произвольного изменения частоты пульса и артериального давления, наличием зон коры, принимающих участие в формировании вазомоторных реакций.
Рефлексы регуляции тонуса сосудов делятся на собственные и сопряженные.
Собственные рефлексы начинаются от рецепторов сердечно-сосудистой системы и через сосудодвигательный центр продолговатого мозга изменяют сосудистый тонус и АД.
Все рефлексы с барорецепторов являются депрессорными, так как приводят к снижению артериального давления (рефлекс с барорецепторов дуги аорты, вазомоторный рефлекс Бейнбриджа с барорецепторов каротидной зоны, рефлекс Парина с барорецепторов легочных артерий, направленный на устранение застоя крови).
Рефлексы с хеморецепторов сосудистых рефлексогенных зон (возникают при увеличении содержания H+ и СО2 и снижении О2) активируют прессорный отдел сосудодвигательного центра продолговатого мозга и тормозят его кардиоингибирующий отдел.
Прессорный отдел активирует симпатические центры, что приводит к активации деятельности сердца, повышению тонуса сосудов и артериального давления.
Рефлексы с хеморецепторов являются прессорными.
Сопряженные рефлексы начинаются с механо- и хеморецепторов верхних дыхательных путей, с раздражения ноцицепторов и сопровождаются повышением тонуса сосудов и артериального давления.
Источник
Сосудистый тонус. Контроль тонуса сосудов
Сосудистый тонус – напряжение сосудистой стенки, которое создается сокращением ее гладкомышечных клеток и изменяет диаметр просвета сосудов. Изменение сосудистого тонуса – главный механизм регуляции периферического и регионального сосудистого сопротивления. К активному изменению тонуса способны сосуды мышечного типа (мелкие артерии и вены, артериолы и венулы, сфинктеры).
Существует два вида сосудистого тонуса, принципиально различающихся механизмами его регуляции.
Центральный (нейрогенный) тонус регулируется вегетативной нервной системой. Иннервация сосудов в основном осуществляется симпатической нервной системой. Большинство сосудов внутренних органов, кожи содержат а-адренорецепторы. Через них осуществляется сосудосуживающее влияние нервной системы. Сосуды мозга и миокарда содержат в основном бета-адренорецепторы, через которые осуществляется сосудорасширяющее действие.
Периферический (базальный) тонус – напряжение сосудистом стенки, которое сохраняется после полной денервации сосудов. Это указывает на то, что помимо нервной системы существуют другие сосудодвигательные механизмы. Базальный тонус регулируется за счет воздействия вазоактивных тканевых метаболитов, эндотелиальных факторов, биологически активных веществ и гормонов. Кроме того, важную роль играет так называемая миогенная регуляция.
Миогенная регуляция сосудистого тонуса (эффект Бейлиса-Остроумова) основана на реакции гладкомышечных клеток сосудов на растяжение. Колебания АД изменяют растяжение стенки и гладкомышечных клеток сосудов. При повышении АД растяжение гладкомышечных клеток возрастает, но в ответ на растяжение происходит их сокращение и тонус артерий возрастает, они суживаются, сосудистое сопротивление увеличивается. Благодаря этому механизму повышение АД сопровождается сокращением гладкой мускулатуры артериол органов, в результате чего не допускается гиперперфузия органов. Напротив, при снижении АД, растяжение стенки сосудов ослабевает, гладкие мышцы сосудов расслабляются, что позволяет поддерживать региональное кровообращение в этих условиях.
Метаболическая регуляция сосудистого тонуса направлена на поддержание соответствия перфузии и метаболизма в органах. Большинство метаболитов энергетического обмена обладают выраженной вазодилатирующей активностью. Это аденозин, С02, молочная кислота, Н+ и другие. В интенсивно работающем органе продукты метаболизма накапливаются, резистивные сосуды расширяются и перфузия органа увеличивается. Этот же механизм действует, когда продукты метаболизма накапливаются из-за ухудшения притока крови к органу.
Эндотелиальная регуляция сосудистого тонуса осуществляется благодаря выработке эндотелиоцитами биологически активных веществ с сосудодвигательной активностью. Эндотелий вырабатывает соединения с дилататорным и констрикторным эффектом на тонус резистивных сосудов. Важнейшим эндотелиальным вазодилататором является оксид азота.
– Также рекомендуем “Гуморально-гормональная регуляция тонуса сосудов. Нейрогенная регуляция сосудов”
Оглавление темы “Норма и патология сосудов”:
1. Сосудистый тонус. Контроль тонуса сосудов
2. Гуморально-гормональная регуляция тонуса сосудов. Нейрогенная регуляция сосудов
3. Признаки изменения сосудистой резистентности. Упругость и эластичность сосудов
4. Пульсативность артерий. Винтовое движение крови
5. Доказательство винтового движения крови. Импульсно-волновая допплерография кровотока
6. Типовые нарушения регионального кровообращения. Артериальная гиперемия
7. Коллатеральный кровоток. Местные нарушения кровообращения
8. Гемодинамическая значимость сосудистых поражений. Факторы влияющие на значимость нарушений кровотока
9. Ультразвук. Характеристика и параметры ультразвука
10. Физические параметры ультразвука. Диагностический ультразвук
Источник
Гуморально-гормональная регуляция тонуса сосудов. Нейрогенная регуляция сосудов
Следует отметить, что одним из важных стимуляторов синтеза оксида азота является механическая деформация эндотелиальных клеток потоком крови – так называемая деформация сдвига эндотелия.
Помимо оксида азота эндотелий вырабатывает другие вазодилататоры: простациклин (простагландин I2), эндотелиальный фактор гиперполяризации, адреномедулин, натрийуретический пептид С-типа. В эндотелии функционирует калликреин-кининовая система, продуцирующая мощнейший пептидный дилататор брадикинин (Куликов В.П., Киселев В.И., Тезов А.А., 1987).
Эндотелий вырабатывает и вазоконстрикторы: эндотелины, тромбоксан (простагландин А2), ангиотензин II, простагландин Н2. Эндотелии 1 (ЕТ1) является наиболее мощным из всех известных вазоконстрикторов.
Эндотелиальные факторы влияют на адгезию и агрегацию тромбоцитов. Простациклин – важнейший антиагрегант, а тромбоксан, напротив, стимулирует адгезию и агрегацию тромбоцитов.
Нарушение этого баланса обозначается как дисфункция эндотелия, которая играет важную роль в патогенезе сердечно-сосудистых заболеваний. Важнейшими лабораторными маркерами дисфункции эндотелия являются эндотелины и фактор Виллебранда.
Гуморально-гормональная регуляция. В основном осуществляется посредством баланса активности прессорной ренин-ангиотензин-альдостероновой и депрессорной калликреин-кининовой систем крови. Эти системы связаны посредством ангиотензин превращающего фермента (АПФ). АПФ превращает неактивный ангиотензин I в ангиотензин II, который является вазоконстриктором и стимулирует выработку альдостерона в коре надпочечников, что сопровождается задержкой воды в организме и способствует подъему АД. Одновременно АПФ является основным ферментом разрушения брадикинина и таким образом устраняет его депрессорный эффект. Поэтому ингибиторы АПФ эффективно снижают АД при гипертензии, изменяя баланс систем в сторону кининовой.
Нейрогенная регуляция. Как уже отмечалось, ведущим эфферентным звеном в нейрогенном контроле сосудистого тонуса является симпатическая нервная система. Известна так называемая ишемическая реакция ЦНС. При значительном снижении системного АД возникает ишемия сосудодвигательного центра и активация симпатической нервной системы. Медиатором последней является норадреналин, вызывающий тахикардию (1-рецепторы) и увеличение тонуса сосудов (1 и 2-рецепторы).
Афферентное звено нейрогенной регуляции сосудистого тонуса представлено барорецепторами и хеморецепторами, расположенными в дуге аорты и каротидном синусе.
Барорецепторы реагируют на степень и скорость растяжения стенки сосудов. Хеморецепторы реагируют на изменение в крови концентрации СО2. Чувствительные волокна от барорецепторов и хеморецепторов дуги аорты и каротидного синуса проходят в составе синокаротидного нерва, ветвей языкоглоточного нерва и депрессорного нерва.
Нейрогенная регуляция обеспечивает постоянный (тонический) контроль над резистивными сосудами большинства сосудистых областей и экстренное рефлекторное регулирование, например, при приеме ортостатического положения. В этом и других случаях, когда давление в каротидном синусе и дуге аорты резко падает, включается каротидный барорефлекс, который через активацию барорецепторов и симпатическую нервную систему суживает сосуды, активирует работу сердца и обеспечивает подъем АД. Барорецепторный рефлекс срабатывает, наоборот, на повышение АД, что обеспечивает его снижение через торможение симпатических влияний и активацию блуждающего нерва. Хеморецепторный рефлекс обеспечивает подъем артериального давления посредством активации симпатических влияний в условиях гипоксии, когда в крови накапливается углекислым газ.
– Также рекомендуем “Признаки изменения сосудистой резистентности. Упругость и эластичность сосудов”
Оглавление темы “Норма и патология сосудов”:
1. Сосудистый тонус. Контроль тонуса сосудов
2. Гуморально-гормональная регуляция тонуса сосудов. Нейрогенная регуляция сосудов
3. Признаки изменения сосудистой резистентности. Упругость и эластичность сосудов
4. Пульсативность артерий. Винтовое движение крови
5. Доказательство винтового движения крови. Импульсно-волновая допплерография кровотока
6. Типовые нарушения регионального кровообращения. Артериальная гиперемия
7. Коллатеральный кровоток. Местные нарушения кровообращения
8. Гемодинамическая значимость сосудистых поражений. Факторы влияющие на значимость нарушений кровотока
9. Ультразвук. Характеристика и параметры ультразвука
10. Физические параметры ультразвука. Диагностический ультразвук
Источник