Оболочки сосудов и сердца содержат

Сердце. Эндокард. Миокард. Строение сердца.
Сердце — центральный орган системы крово- и лимфообращения. Благодаря способности к сокращениям, сердце приводит в движение кровь.
Стенка сердца состоит из трех оболочек: эндокарда, миокарда и эпикарда.
Эндокард. Во внутренней оболочке сердца различают следующие слои: эндотелий, выстилающий изнутри полости сердца, и его базальную мембрану; подэндотелиальный слой, представленный рыхлой соединительной тканью, в которой много малодиффе-ренцированных клеток; мышечно-эласти-ческий слой, состоящий из гладкой мышечной ткани, между клетками которой в виде густой сети располагаются эластические волокна; наружный соединительнотканный слой, состоящий из рыхлой соединительной ткани. Эндотелий и подэндотелиальный слои аналогичны внутренней оболочке сосудов, мышечно-эластический является “эквивалентом” средней оболочки, а наружный соединительнотканный слой аналогичен наружной (адвентициальной) оболочке сосудов.
Поверхность эндокарда идеально гладкая и не препятствует свободному движению крови. В предсердно-желудочковой области и у основания аорты эндокард образует дупликатуры (складки), именуемые клапанами. Различают предсердно-желудочковые и желудочково-сосудистые клапаны. В местах прикрепления клапанов имеются фиброзные кольца. Клапаны сердца — это плотные пластинки волокнистой соединительной ткани, покрытые эндотелием. Питание эндокарда происходит путем диффузии веществ из крови, находящейся в полостях предсердий и желудочков.
Миокард (средняя оболочка сердца) — многотканевая оболочка, состоящая из поперчнополосатой сердечной мышечной ткани, межмышечной рыхлой соединительной ткани, многочисленных сосудов и капилляров, а также нервных элементов. Основной структурой является сердечная мышечная ткань, в свою очередь состоящая из клеток, формирующих и проводящих нервные импульсы, и клеток рабочего миокарда, обеспечивающих сокращение сердца (кардиомиоцитов). Среди клеток, формирующих и проводяших импульсы, в проводящей системе сердца различают три вида: Р-клетки (клетки-пейсмекеры), промежуточные клетки и клетки (волокна) Пуркиня.
Р-клетки — клетки-водители ритма, располагаются в центре синусного узла проводящей системы сердца. Они имеют полигональную форму и детерминированы на спонтанную деполяризацию плазмолеммы. Миофибриллы и органеллы общего значения в клетках-пейсмекерах выражены слабо. Промежуточные клетки — неоднородная по составу группа клеток, передают возбуждение от Р-клеток к клеткам Пуркиня. Клетки Пуркиня — клетки с небольшим количеством миофибрилл и полным отсутствием Т-системы, с большим по сравнению с рабочими сократительными миоцитами количеством циоплазмы. Клетки Пуркиня передают возбуждение от промежуточных клеток к сократительным клеткам миокарда. Они входят в состав пучка Гиса проводящей системы сердца.
Неблагоприятное влияние на клетки-пейсмекеры и клетки Пуркиня оказывают ряд лекарственных препаратов и другие факторы, способные привести к возникновению аритмий и блокады сердца. Наличие в сердце собственной проводящей системы чрезвычайно важно, поскольку она обеспечивает ритмичную смену систолических сокращений и диастол камер сердца (предсердий и желудочков) и работу его клапанного аппарата.
Основную массу миокарда составляют сократительные клетки — сердечные миоциты, или кардиомиоцитпы. Это клетки вытянутой формы с упорядоченной системой поперечноисчерченных миофибрилл, расположенных на периферии. Между миофибриллами находятся митохондрии с большим количеством крист. В миоцитах предсердий Т-система выражена слабо. Слабо развита в кардиомиоцитах гранулярная эндоплазматическая сеть. В центральной части миоцитов располагается ядро овальной формы. Иногда встречаются двуядерные кардиомиоциты. В мышечной ткани предсердий присутствуют кардиомиоциты с осмиофильными секреторными гранулами, содержащими натрийуретический пептид.
В кардиомиоцитах определяются включения гликогена, служащего энергетическим материалом сердечной мышцы. Содержание его в миоцитах левого желудочка больше, чем в других отделах сердца. Миоциты рабочего миокарда и проводящей системы соединяются между собой посредством вставочных дисков — специализированных межклеточных контактов. В области вставочных дисков прикрепляются актиновые сократительные миофиламенты, присутствуют десмосомы и щелевые контакты (нексусы).
Десмосомы способствуют прочному сцеплению сократительных миоцитов в функциональные мышечные волокна, а нексусы обеспечивают быстрое распространение волн деполяризации плазмолемм с одной мышечной клетки на другую и существование сердечного мышечного волокна как единой метаболической единицы. Характерным для миоцитов рабочего миокарда является присутствие анастомозирующих мостиков — взаимосвязанных фрагментов цитоплазм мышечных клетток разных волокон с находящимися в них миофибриллами. Тысячи таких мостиков превращают мышечную ткань сердца в сетчатую структуру, способную синхронно и эффективно сокращаться и выбрасывать из полостей желудочков необходимые систолические объемы крови. После перенесенных обширных инфарктов миокарда (острых ишемических некрозов стенки сердца), когда диффузно поражаются мышечная ткань сердца, система вставочных дисков, анастомозирующих мостиков и проводящая система, возникают нарушения ритма работы сердца вплоть до фибрилляции. В этом случае сократительная деятельность сердца превращается в отдельные несогласованные подергивания мышечных волокон и сердце не в состоянии выбрасывать нужные систолические порции крови в периферическую циркуляцию.
Миокард состоит в целом из высокоспециализированных клеток, утративших способность делиться митозом. Лишь в определенных участках предсердий наблюдаются митозы кардиомиоцитов (Румянцев П.П., 1982). Вместе с тем, для миокарда характерно наличие полиплоидных миоцитов, что значительно усиливает его рабочий потенциал. Явление полиплоидности наиболее часто наблюдается при компенсаторных реакциях миокарда, когда повышается нагрузка на сердце, и при патологии (недостаточности сердечных клапанов, заболеваниях легких и др.).
Сердечные миоциты в этих случаях резко гипертрофируются, и стенка сердца в том или ином отделе утолщается. В миокардиальной соединительной ткани заключена богато разветвленная сеть кровеносных и лимфатических капилляров, что обеспечивает постоянно работающую сердечную мышцу питанием и кислородом. В прослойках соединительной ткани имеются плотные пучки коллагеновых волокон, а также эластические волокна. В целом, эти соединительнотканные структуры составляют опорный скелет сердца, к которому прикрепляются сердечные мышечные клетки.
Сердце — орган, обладающий способностью к автоматизму сокращений. Оно может функционировать в известных пределах автономно. Однако в организме деятельность сердца находится под контролем нервной системы. В интрамуральных нервных узлах сердца находятся чувствительные вегетативные нейроны (клетки Догеля П-го типа), малые интенсивно флюоресцирующие клетки — МИФ-клетки и эффекторные вегетативные нейроны (клетки Догеля 1-го типа). МИФ-клетки рассматриваются как вставочные нейроны.
Эпикард — наружная оболочка сердца — представляет собой висцеральный листок околосердечной сумки (перикарда). Свободная поверхность эпикарда выстлана мезотелием так же, как и поверхность перикарда, обращенная в перикардиальную полость. Под мезотелием в составе этих серозных оболочек находится соединительнотканная основа из рыхлой волокнистой соединительной ткани.
– Также рекомендуем “Дыхательный комплекс органов. Развитие дыхательной системы.”
Оглавление темы “Сердечно-сосудистая система. Дыхательная система.”:
1. Желчевыводящие пути и желчный пузырь. Строение желчного пузыря.
2. Сердечно-сосудистый комплекс органов. Артерии. Виды и строение артерий.
3. Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.
4. Вены. Строение вен. Стенки и структура вен.
5. Лимфатические сосуды. Строение лимфатических сосудов. Стенки лимфатических сосудов.
6. Сердце. Эндокард. Миокард. Строение сердца.
7. Дыхательный комплекс органов. Развитие дыхательной системы.
8. Гортань. Слизистая гортани. Стенки гортани. Трахея. Стенки трахеи. Слизистая трахеи.
9. Легкие. Внутрилегочные бронхи. Строение внутрилегочных бронхов.
10. Респираторный отдел легких. Строение респираторного отдела легких.
Источник
Оглавление темы “Общая ангиология.”:
1. Общая ангиология. Сосудистая система.
2. Кровеносная система. Артерии. Стенка артерий. Капилляры. Вены.
3. Схема кровообращения. Микроциркуляция. Микроциркуляторное русло.
4. Малый круг кровообращения.
5. Большой (телесный) круг кровообращения. Регионарное кровообращение.
Кровеносная система. Артерии. Стенка артерий. Капилляры. Вены
Кровеносная система состоит из центрального органа — сердца — и находящихся в соединении с ним замкнутых трубок различного калибра, называемых кровеносными сосудами (лат. vas, греч. angeion — сосуд; отсюда — ангиология). Сердце своими ритмическими сокращениями приводит в движение всю массу крови, содержащуюся в сосудах.
Артерии. Кровеносные сосуды, идущие от сердца к органам и несущие к ним кровь, называются артериями (аег — воздух, tereo — содержу; на трупах артерии пусты, отчего в старину считали их воздухоносными трубками).
Стенка артерий состоит из трех оболочек. Внутренняя оболочка, tunica intima. выстлана со стороны просвета сосуда эндотелием, под которым лежат субэндотелий и внутренняя эластическая мембрана; средняя, tunica media, построена из волокон неисчерченной мышечной ткани, миоцитов, чередующихся с эластическими волокнами; наружная оболочка, tunica externa, содержит соединительнотканые волокна. Эластические элементы артериальной стенки образуют единый эластический каркас, работающий как пружина и обусловливающий эластичность артерий.
По мере удаления от сердца артерии делятся на ветви и становятся все мельче и мельче. Ближайшие к сердцу артерии (аорта и ее крупные ветви) выполняют главным образом функцию проведения крови. В них на первый план выступает противодействие растяжению массой крови, которая выбрасывается сердечным толчком. Поэтому в стенке их относительно больше развиты структуры механического характера, т. е. эластические волокна и мембраны. Такие артерии называются артериями эластического типа. В средних и мелких артериях, в которых инерция сердечного толчка ослабевает и требуется собственное сокращение сосудистой стенки для дальнейшего продвижения крови, преобладает сократительная функция.
Она обеспечивается относительно большим развитием в сосудистой стенке мышечной ткани. Такие артерии называются артериями мышечного типа. Отдельные артерии снабжают кровью целые органы или их части.
По отношению к органу различают артерии, идущие вне органа, до вступления в него — экстраорганные артерии, и их продолжения, разветвляющиеся внутри него — внутриорганные, или ингпраорганные, артерии. Боковые ветви одного и того же ствола или ветви различных стволов могут соединяться друг с другом. Такое соединение сосудов до распадения их на капилляры носит название анастомоза, или соустья (stoma — устье). Артерии, образующие анастомозы, называются анастомозирующими (их большинство).
Артерии, не имеющие анастомозов с соседними стволами до перехода их в капилляры (см. ниже), называются конечными артериями (например, в селезенке). Конечные, или концевые, артерии легче закупориваются кровяной пробкой (тромбом) и предрасполагают к образованию инфаркта (местное омертвение органа).
Последние разветвления артерий становятся тонкими и мелкими и потому выделяются под названием артериол.
Артериола отличается от артерии тем, что стенка ее имеет лишь один слой мышечных клеток, благодаря которому она осуществляет регулирующую функцию. Артериола продолжается непосредственно в прекапилляр, в котором мышечные клетки разрозненны и не составляют сплошного слоя. Прекапилляр отличается от артериолы еще и тем, что он не сопровождается венулой.
От прекапилляра отходят многочисленные капилляры.
Капилляры представляют собой тончайшие сосуды, выполняющие обменную функцию. В связи с этим стенка их состоит из одного слоя плоских эндотелиальных клеток, проницаемого для растворенных в жидкости веществ и газов. Широко анастомозируя между собой, капилляры образуют сети (капиллярные сети), переходящие в посткапилляры, построенные аналогично прекапилляру. Посткапилляр продолжается в венулу, сопровождающую арте-риолу. Венулы образуют тонкие начальные отрезки венозного русла, составляющие корни вен и переходящие в вены.
– Дополнительно: Гистология капилляра
– Дополнительно: Гистология капилляра
– Дополнительно: Гистология капилляра
– Дополнительно: Гистология капилляра
Вены (лат. vena, греч. phlebs; отсюда флебит — воспаление вен) несут кровь в противоположном по отношению к артериям направлении, от органов к сердцу. Стенки их устроены по тому же плану, что и стенки артерий, но они значительно тоньше и в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются, просвет же артерий на поперечном разрезе зияет; вены, сливаясь друг с другом, образуют крупные венозные стволы — вены, впадающие в сердце.
Вены широко анастомозируют между собой, образуя венозные сплетения.
Движение крови по венам осуществляется благодаря деятельности и присасывающему действию сердца и грудной полости, в которой во время вдоха создается отрицательное давление в силу разности давления в полостях, а также благодаря сокращению скелетной и висцеральной мускулатуры органов и другим факторам.
Имеет значение и сокращение мышечной оболочки вен, которая в венах нижней половины тела, где условия для венозного оттока сложнее, развитасильнее, чем в венах верхней части тела. Обратному току венозной крови препятствуют особые приспособления вен — клапаны, составляющие особенности венозной стенки. Венозные клапаны состоят из складки эндотелия, содержащей слой соединительной ткани. Они обращены свободным краем в сторону сердца и поэтому не препятствуют току крови в этом направлении, но удерживают ее от возвращения обратно.
Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами, а крупные — одной. Из этого правила, кроме некоторых глубоких вен, составляют исключение главным образом поверхностные вены, идущие в подкожной клетчатке и почти никогда не сопровождающие артерий. Стенки кровеносных сосудов имеют собственные обслуживающие их тонкие артерии и вены, vasa vasorum. Они отходят или от того же ствола, стенку которого снабжают кровью, или от соседнего и проходят в соединительнотканном слое, окружающем кровеносные сосуды и более или менее тесно связанном с их наружной оболочкой; этот слой носит название сосудистого влагалища, vagina vasorum.
В стенке артерий и вен заложены многочисленные нервные окончания (рецепторы и эффекторы), связанные с центральной нервной системой, благодаря чему по механизму рефлексов осуществляется нервная регуляция кровообращения. Кровеносные сосуды представляют обширные рефлексогенные зоны, играющие большую роль в нейро-гуморальной регуляции обмена веществ.
Соответственно функции и строению различных отделов и особенностям иннервации все кровеносные сосуды в последнее время слали делить на 3 группы: 1) присердечные сосуды, начинающие и заканчивающие оба круга кровообращения, — аорта и легочный ствол (т. е. артерии эластического типа), полые и легочные вены; 2) магистральные сосуды, служащие для распределения крови по организму. Это — крупные и средние экстраорганные артерии мышечного типа и экстраорганные вены; 3) органные сосуды, обеспечивающие обменные реакции между кровью и паренхимой органов. Это — внутриорганные артерии и вены, а также звенья микроциркуляторного русла.
– Также рекомендуем “Схема кровообращения. Микроциркуляция. Микроциркуляторное русло.”
Источник
Сердечно-сосудистый комплекс органов. Артерии. Виды и строение артерий.
Сердечно-сосудистый комплекс органов включает сердце, артерии, сосуды микроциркуляторного русла, вены, лимфатические сосуды. Сердце и замкнутая сеть сосудов обеспечивают циркуляцию крови в организме и транспорт лимфы к сердцу. Деятельность сердечно-сосудистого комплекса направлена на поддержание метаболизма и постоянства внутренней среды организма — из крови к тканям и клеткам поступают питательные вещества, кислород, биологически активные вещества, регулирующие их развитие и функции; в кровь и лимфу удаляются ненужные клеткам шлаки и продукты их специальной деятельности.
Развитие. Источником развития кровеносных сосудов является мезенхима. Первые сосуды возникают вне организма зародыша — в стенке желточного мешка и хориона в начале 3-й недели эмбриогенеза. Первоначально образуются скопления клеток мезенхимы, именуемые кровяными островками. Периферические клетки островков уплощаются и, соединяясь друг с другом, формируют примитивные сосуды в виде эндотелиальных трубок. Центрально расположенные мезенхимоциты дифференцируются в первичные клетки крови (начальный интраваскулярный этап кроветворения). В теле зародыша сосуды появляются позже, также из мезенхимы путем разрастания ее клеток по стенкам щелевидных пространств зародыша.
В конце 3-й недели устанавливается сообщение между первичными кровеносными сосудами внезародышевых органов и тела зародыша. После начала циркуляции крови структура сосудов заметно усложняется в соответствии с региональными условиями гемодинамики. В составе стенок сосудов, помимо эндотелия, развиваются другие ткани (происходящие также из мезенхимы), которые, объединяясь, формируют внутреннюю, среднюю, и наружную оболочки сосудов.
Закладка сердца возникает в начале 3-й недели развития в виде парных мезенхимных трубок. После их слияния начинается дифференцировка тканей внутренней оболочки сердца — эндокарда. Средняя и наружная оболочки сердца формируются также из парных миоэпикардиальных пластинок — фрагментов правого и левого висцеральных листков спланхнотома. Миоэпикардиальные пластинки приближаются к закладке эндокарда, окружают ее снаружи, и далее, сливаясь, дифференцируются в тканевые элементы мио- и эпикарда.
Артерии. Виды и строение артерий.
Артерии — сосуды, обеспечивающие продвижение крови от сердца к микроциркуляторному руслу. По величине диаметра они подразделяются на артерии малого, среднего и крупного калибра. Стенка всех артерий состоит из трех оболочек: внутренней (tunica intima), средней (tunica media) и наружной (tunica externa). Тканевый состав и степень развития этих оболочек в артериях разного калибра неодинаковы, что связано с гемодинамическими условиями и особенностями функций, выполняемых сосудами тех или иных отделов артериального русла. По количественному соотношению эластических и мышечных элементов в средней оболочке сосуда различают артерии эластического, смешанного (мышечно-эластического) и мышечного типов.
Артерии эластического типа (аорта и легочная артерия) выполняют транспортную функцию и функцию поддержания давления крови в артериальной системе во время диастолы сердца. Стенка их испытывает ритмические изменения кровяного давления. Кровь в эти сосуды поступает под высоким давлением (120-130 мм рт. ст.) и со скоростью около 1 м/с. В этих условиях вполне оправдано сильное развитие эластического каркаса стенки, который позволяет растягиваться сосудам во время систолы и принимать исходное положение во время диастолы. Возвращаясь в исходное положение, эластичная стенка таких сосудов способствует тому, что последовательно выбрасываемые из желудочков сердца порции крови превращаются в непрерывный кровоток.
Внутренняя оболочка сосудов эластического типа (на примере аорты) состоит из эндотелия, подэндотелиального слоя и сплетения эластических волокон. В подэндотелиальном слое определяются малодифференцированные звездчатые клетки рыхлой соединительной ткани, отдельные гладкие мышечные клетки, большое количество гликозаминогликанов. С возрастом здесь отмечается накопление холестерина. В средней оболочке аорты имеется до 50 эластических окончатых мембран (точнее — эластических окончатых цилиндров разных диаметров, вставленных друг в друга), в отверстиях которых располагаются гладкие мышечные клетки и эластические волокна. Наружная оболочка состоит из рыхлой волокнистой соединительной ткани, содержащей сосуды сосудов и нервные стволики.
Артерии смешанного (мышечно-эластического) типа характеризуются примерно равным количеством мышечных и эластических элементов в составе средней оболочки. Между гладкими миоцитами лежат густые сети эластических фибрилл.
На границе внутренней и средней оболочек отчетливо выражена внутренняя эластическая мембрана. В наружной оболочке содержатся пучки гладких мышечных клеток, а также коллагеновых и эластических волокон. К артериям данного типа относятся сонная, подключичная и другие.
Артерии мышечного типа выполняют не только транспортную, но и распределительную функции, регулируя приток крови к органам в условиях разных физиологических нагрузок (это, так называемые, органные артерии). Артерии мышечного типа содержат в средней оболочке гладкие миоциты. Это позволяет артериям регулировать приток крови к органам и поддерживать нагнетание крови, что важно для кровоснабжения органов, расположенных на большом удалении от сердца. Артерии мышечного типа могут быть крупного, среднего и малого калибров. Внутреннюю оболочку стенки этих артерий образуют эндотелий, лежащий на базальной мембране, подэндотелиальный слой и внутренняя эластическая мембрана, однако в мелких артериях внутренняя эластическая мембрана выражена слабо.
Средняя оболочка образована гладкой мышечной тканью с небольшим количеством фибробластов, коллагеновых и эластических волокон. Гладкие миоциты располагаются в средней оболочке по пологой спирали. Вместе с радиально и дугообразно расположенными эластическими волокнами миоциты создают единый пружинящий каркас, который препятствует спадению артерий, обеспечивая их зияние и непрерывность кровотока. На границе между средней и наружной оболочками имеется наружная эластическая мембрана. Последняя относится к наружной оболочке, состоящей из рыхлой соединительной ткани. Коллагеновые волокна имеют косое и продольное направление. В наружной оболочке артерий мышечного типа проходят питающие их кровеносные сосуды и нервы.
С помощью растровой электронной микроскопии показано, что внутренняя поверхность эндотелия артерий имеет многочисленные складки и углубления, разнообразные по форме микроскопические выросты. Это создает неровный и сложный микрорельеф внутренней (люминальной) поверхности сосудов. Такой микрорельеф увеличивает свободную поверхность соприкосновения эндотелия с кровью, что имеет трофическое значение и создает благоприятные условия для гемодинамики.
– Также рекомендуем “Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.”
Оглавление темы “Сердечно-сосудистая система. Дыхательная система.”:
1. Желчевыводящие пути и желчный пузырь. Строение желчного пузыря.
2. Сердечно-сосудистый комплекс органов. Артерии. Виды и строение артерий.
3. Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.
4. Вены. Строение вен. Стенки и структура вен.
5. Лимфатические сосуды. Строение лимфатических сосудов. Стенки лимфатических сосудов.
6. Сердце. Эндокард. Миокард. Строение сердца.
7. Дыхательный комплекс органов. Развитие дыхательной системы.
8. Гортань. Слизистая гортани. Стенки гортани. Трахея. Стенки трахеи. Слизистая трахеи.
9. Легкие. Внутрилегочные бронхи. Строение внутрилегочных бронхов.
10. Респираторный отдел легких. Строение респираторного отдела легких.
Источник