Однослойный пласт клеток кровеносных сосудов

Однослойный пласт клеток кровеносных сосудов thumbnail

“Каждый человек надеется прожить долго, но никто не желает быть старым”

Джонатан Свифт

“Здоровье человека, равно как и его возраст, определяется состоянием его сосудов”

Медицинская аксиома

Эндотелий – однослойный пласт плоских клеток, выстилающих внутреннюю поверхность кровеносных и лимфатических сосудов, а также полостей сердца.

До недавнего времени считалось, что главная функция эндотелия – это полировка сосудов изнутри. И только в конце ХХ века, после присуждения в 1998 г. Нобелевской премии в области медицины, стало ясно, что основной причиной артериальной гипертензии (по народному – гипертонии) и других сердечно-сосудистых заболеваний является патология эндотелия.

Именно сейчас мы начинаем понимать, насколько важна роль этого органа. Да, именно органа, т.к. суммарный вес эндотелиальных клеток составляет 1,5-2 кг (как у печени!), а площадь его поверхности равна площади футбольного поля. Так каковы же функции эндотелия, этого огромного органа, распределенного по всей территории человеческого организма?

Выделяют 4 главные функции эндотелия:

  1. Регуляция тонуса сосудов – поддержка нормального артериального давления (АД); сужение сосудов, когда необходимо ограничить кровоток (например, на холоде, чтобы уменьшить теплопотерю), или их расширение – в активно работающем органе (мышце, поджелудочной железе при выработке пищеварительных ферментов, печени, головном мозге и т.п.), когда необходимо увеличить его кровоснабжение.
  2. Расширение и восстановление сети кровеносных сосудов. Эта функция эндотелия обеспечивает рост тканей и процессы заживления. Именно эндотелиальные клетки во всей сосудистой системе взрослого организма делятся, передвигаются и создают новые сосуды. К примеру, в каком-нибудь органе после воспаления часть тканей гибнет. Фагоциты съедают погибшие клетки, а в зоне поражения прорастающие клетки эндотелия образуют новые капилляры, через которые в ткань выходят стволовые клетки и частично восстанавливают поврежденный орган. Так восстанавливаются все клетки, в том числе и нервные. Нервные клетки восстанавливаются! Это доказанный факт. Проблема не в том, как мы болеем. Важнее то, как мы выздоравливаем! Старят не годы, но болезни!
  3. Регуляция свертывания крови. Эндотелий препятствует образованию тромбов и активирует процесс свертывания крови при повреждении сосуда.
  4. Эндотелий активно участвует в процессе местного воспаления – защитного механизма выживания. Если где-то в организме, кое-что чужеродное порой начинает поднимать голову, то именно эндотелий начинает в этом месте пропускать из крови через стенку сосуда в ткань защитные антитела и лейкоциты.

Эти функции эндотелий осуществляет, вырабатывая и выделяя большое количество разных биологически активных веществ. Но главной молекулой, вырабатываемой эндотелием, является NO – оксид азота. Именно открытие ключевой роли NO в регуляции сосудистого тонуса (другими словами – артериального давления) и вообще состояния сосудов, было удостоено Нобелевской премии в 1998 г. Исправно функционирующий эндотелий непрерывно вырабатывает NO, поддерживая нормальное давление в сосудах. Если количество NO снижается в результате уменьшения выработки клетками эндотелия или разложения его активными радикалами, сосуды не могут адекватно расширяться и доставлять больше питательных веществ и кислорода в активно работающие органы.

NO химически нестабилен – он существует всего несколько секунд. Поэтому NO действует только там, где выделяется. И если где-то функции эндотелия нарушены, то другие, здоровые, клетки эндотелия не могут компенсировать локальную эндотелиальную дисфункцию. Развивается локальная недостаточность кровоснабжения – ишемическая болезнь. Специфические клетки органов гибнут и замещаются соединительной тканью. Развивается старение органов, что рано или поздно проявляется болями в сердце, запорами, нарушением функции печени, поджелудочной железы, сетчатки глаза и т.п. Эти процессы протекают медленно, и, зачастую, незаметно для самого человека, однако резко ускоряются при любой болезни. Чем тяжелее протекает болезнь, тем массивнее повреждение тканей, тем, следовательно, больше придется восстанавливать.

Главной задачей медицины всегда было спасение жизни человеческой. Собственно, ради этого благородного дела мы поступали в мединститут и этому нас учили, и мы учили. Однако не менее важно обеспечить процесс восстановления после болезни, предоставить организму все необходимое. Если Вы думаете, что антибиотики или противовирусные препараты (я имею в виду те, которые действительно действуют на вирус) вылечивают человека от инфекции, то Вы ошибаетесь. Эти препараты останавливают прогрессивное размножение бактерий и вирусов. А излечение, т.е. уничтожение нежизнеспособного и восстановление того, что было, осуществляется клетками иммунной системы, клетками эндотелия и стволовыми клетками!

Чем лучше процесс будет обеспечен всем необходимым, тем полнее произойдет восстановление – в первую очередь кровоснабжения пораженной части органа. Именно для этого и создан препарат ЛонгаДНК. В его составе L-аргинин – источник NO, витамины, обеспечивающие обмен веществ внутри делящейся клетки, ДНК, необходимая для полноценного процесса деления клеток.

Что такое L-аргинин и ДНК и как они действуют:

L-аргинин – аминокислота, основной источник для образования оксида азота в клетках эндотелия сосудов, нервных клетках и макрофагах. NO играет главную роль в процессе расслабления гладкой мышцы сосудов, что приводит к снижению артериального давления, препятствует образованию тромбов. Огромное значение NO имеет для нормального функционирования нервной и иммунной систем.

Читайте также:  Тесты по правилам сосуды работающие под давлением

На сегодняшний день экспериментально и клинически доказаны следующие эффекты L-аргинина:

  • Один из самых эффективных стимуляторов продукции гормона роста, позволяет поддерживать его концентрацию на верхних границах нормы, что способствует улучшению настроения, делает человека более активным, инициативным и выносливым. Многие геронтологи объясняют феномен долгожительства повышенным уровнем гомона роста у долгожителей.
  • Увеличивает скорость восстановления поврежденных тканей – ран, растяжений сухожилий, переломов костей.
  • Увеличивает мышечную и уменьшает жировую массу тела, эффективно помогая похудеть.
  • Эффективно усиливает выработку сперматозоидов, используется для лечения бесплодия у мужчин.
  • Играет существенную роль в процессах запоминания новой информации.
  • Является гепатопротектором – защитником, улучшающим функции печени.
  • Стимулирует активность макрофагов – клеток, защищающих организм от агрессии чужеродных бактерий.

ДНК – дезоксирибонуклеиновая кислота – источник нуклеотидов для синтеза собственной ДНК в активно размножающихся клетках (эпителий желудочно-кишечного тракта, клетки крови, клетки эндотелия сосудов):

  • Мощно стимулирует клеточную регенерацию и восстановительные процессы, ускоряет заживление ран.
  • Обладает выраженным положительным влиянием на иммунную систему, усиливает фагоцитоз и местный иммунитет, за счет чего резко повышает устойчивость и невосприимчивость организма к инфекциям.
  • Восстанавливает и усиливает адаптационные возможности органов, тканей и организма человека в целом.

Конечно, у каждого человека в клетке собирается его собственная, уникальная ДНК, ее уникальность обеспечивается последовательностью нуклеотидов, и, если чего-то, совсем чуть-чуть – пары нуклеотидов, не хватит, или из-за нехватки одного из витаминов какой-нибудь элемент будет собран неправильно – вся работа насмарку! Дефектная клетка будет уничтожена! Для этого в организме существует специальный надзорный отдел иммунной системы. Вот для того, чтобы выздоровление проходило максимально эффективно, чтобы замедлить процесс старения, и создана ЛонгаДНК. ЛонгаДНК – это пища для эндотелия.

Здоровый эндотелий – здоровые сосуды. ЛонгаДНК!

ЛонгаДНК – живите долго!

Есть еще несколько проявлений дисфункции эндотелия, которые никого не могут оставить равнодушным. Прежде всего – это гипертоническая болезнь и болезни вен. И еще – эректильная дисфункция. Раньше говорили – импотенция. Сейчас этот термин не употребляют, потому что процесс, в общем-то, обратим. Эректильная дисфункция – это звоночек с того света – все, дорогой товарищ, процесс пошел! Верною дорогой идете, прямо к инсульту или инфаркту миокарда! Об этом – следующие статьи.

С уважением, Ваш доктор Шубин Александр Иванович

БАД. Не является лекарством

Возврат к списку

Хотите бесплатно

задать вопрос доктору?

?

Источник

На границе между внутренней и внешней средой находится пограничный эпителий (эпидермис кожи, эпителий и железы слизистых оболочек пищеварительного тракта, дыхательных путей, мочевыделительной и половой систем). Этот пограничный эпителий образует пласты. В виде пластов организован и эпителий, ограничивающий вторичные полости тела (серозные оболочки: брюшная, плевральная, сердечная сумка). Островки, тяжи, фолликулы и отдельные эпителиальные клетки находятся и во внутренней среде организма (расположенные диффузно эндокринные клетки, клетки желёз внутренней секреции). Эпителии происходят из всех первичных зародышевых листков.

Организация эпителиев

Эпителии характеризуются следующими чертами организации: пограничное расположение, характерная пространственная геометрия, практическое отсутствие межклеточного вещества, полярная дифференцировка, наличие базальной мембраны, отсутствие кровеносных сосудов, выраженная способность к регенерации пограничных эпителиев, специфический тип промежуточных нитей (цитокератины).

Пограничное расположение

Эпителии отделяют организм от внешней среды и от вторичных полостей тела. Эту задачу выполняют пласты эпителия. Образуя непрерывный слой, эпителий отделяет подлежащие ткани от внешней среды и от вторичных полостей тела. Толщина пластов различна. Например, эпидермис кожи имеет толщину до нескольких десятков микрометров, тогда как эпителий на поверхности альвеол лёгкого – около 0,2 мкм. Пласт – не единственный тип организации эпителиев.

Незначительные межклеточные пространства

В эпителии практически нет межклеточного вещества, клетки плотно примыкают одна к другой и связаны при помощи специализиро-

ванных межклеточных контактов. Эпителиоциты формируют адгезионные (промежуточный, десмосома и полудесмосома), замыкающие (плотный) и коммуникационные (щелевой) контакты.

Полярная дифференцировка эпителиальных клеток

Базальная и апикальная части клетки отличаются как структурно, так и функционально. Этот признак обязателен для однослойных эпителиев пограничного расположения (на границе внешней и внутренней сред, на поверхности серозных оболочек), а также для эпителиальных клеток, находящихся в тесной связи с кровеносными капиллярами (например, в эндокринных железах, печени). Полярная дифференцировка эпителиальных клеток детерминирована генетически. Так, липидный состав плазмолеммы апикальной и базальной частей эпителиальных клеток существенно различается. В плазмолемме апикальной части клетки преобладают фосфатидилэтаноламин и фосфатидилсерин. Плазмолемма базальной части содержит преимущественно фосфатидилхолин, сфингомиелин и фосфатидилинозитол. Апикальная часть содержит микроворсинки, стереоцилии, реснички, секреторный материал и участвует в образовании плотных и промежуточных контактов. Микроворсинки (см. рис. 2-31) присутствуют в эпителиальных клетках, осуществляющих транспорт из внешней среды (например, всасывание в кишечнике, реабсорбция в канальцах почки). Основная функция микроворсинок – увеличение площади контакта. Базальная часть содержит различные органеллы. Локализация митохондрий преимущественно в базальной части связана с необходимостью АТФ для встроенных в плазмолемму этой части клетки ионных насосов (например, Na+,К+-АТФаза). В базальной части клетки присутствуют рецепторы гормонов и факторов роста, транспортные системы ионов и аминокислот.

Читайте также:  Вспышки в глазах сосуды

Базальная мембрана

Базальная мембрана (базальная пластинка) имеет толщину 20-100 нм, отделяет эпителий от подлежащей соединительной ткани, укрепляет эпителиальный пласт, образуется за счёт эпителия и подлежащей соединительной ткани, содержит коллаген типа IV, ламинин, энтактин и протеогликаны. Эпителиальные клетки прикреплены к базальной мембране при помощи полудесмосом. Через базальную мембрану осуществляется питание эпителия. У эпителиальных клеток печени нет базальной мембраны.

Отсутствие кровеносных сосудов

Питание эпителия, транспорт газов, выведение продуктов метаболизма из эпителия осуществляются путём диффузии веществ через ба-

зальную мембрану между эпителием и подлежащими кровеносными сосудами.

Пространственная организация эпителия

Эпителиальные клетки организованы в ассоциаты на границе внутренней и внешней среды организма, а также во внутренней среде. К таким ассоциатам относятся пласты, тяжи, островки, фолликулы, трубочки и сеть из клеток.

Пласт. Эпителиальные клетки, формирующие пласты, всегда имеют пограничное положение (например, эпидермис, эпителии слизистой оболочки кожного и кишечного типа, мезотелии). Для клеток однослойного пласта характерна полярная дифференцировка, а многослойные пласты имеют значительные морфологические отличия между эпителиальными клетками разных слоёв.

Трубочка – вариант пласта, свёрнутого в трубочку (например, потовые железы, канальцы нефрона).

Островок. Эпителиальные островки всегда погружены во внутреннюю среду организма и, как правило, выполняют эндокринную функцию (например, островки поджелудочной железы).

Фолликул – имеющий полость островок эпителия. Типичный пример – фолликулы щитовидной железы.

Тяж. По принципу анастомозирующих тяжей из эпителиальных гепатоцитов организована паренхима печени.

Сеть. В вилочковой железе поддерживающий каркас состоит из отростчатых и контактирующих друг с другом эпителиальных клеток.

Способность эпителия к регенерации

Регенерация выражена у покровных эпителиев и вытекает из их пограничного расположения. Необходимые условия для регенерации – доказанное или предполагаемое наличие стволовых клеток (например, в эпидермисе, эпителии слизистой оболочки трубчатых и полостных органов, мезотелии), возможность репликации ДНК с последующим цитокинезом или без него (например, гепатоциты). У погружённых во внутреннюю среду эпителиальных клеток регенераторные возможности существенно меньше, вплоть до полной невозможности регенерации (например, β-клетки островков поджелудочной железы). Для ряда эпителиев (например, эпителиальные клетки канальцев нефрона и эндокринные клетки передней доли гипофиза) способность к регенерации как будто имеется, хотя её механизмы неясны.

Цитокератины

Промежуточные филаменты клеток различных эпителиев имеют разные молекулярные формы цитокератина. Более того, в различных анатомических областях одного и того же эпителия могут экспресси-

роваться различные формы цитокератина. Например, кератиноциты ладони и подошвы синтезируют особые кератины, не встречающиеся в других частях тела. Известно более 20 форм кератина, каждая форма кодирована своим геном. По мере дифференцировки эпителиоцитов происходит перепрограммирование синтеза кератинов (например, в эпидермисе). Экспрессия некоторых кератинов – признак появления клеток, достигших состояния терминальной дифференцировки. Так, цитокератин 1 служит маркёром терминальной дифференцировки кератиноцитов многослойного плоского эпителия.

Классификации эпителиальных пластов

Для эпителиальных пластов принята классификация, учитывающая количество слоёв клеток (одно- и многослойные), рядность однослойного эпителия (одно- и многорядные), форма клеток (для многослойных – поверхностного слоя), характер полярной дифференцировки (рис. 5-2). Слойность. Контакт всех клеток пласта с базальной мембраной определяет слойность эпителия. Если все клетки пласта связаны с базальной мембраной, эпителий – однослойный. Если это условие не выполняется, эпителий – многослойный. Эктодермальные эпителии – многослойные. Энтодермальные эпителии, как правило, – однослойные. Рядность однослойных эпителиев отражает наличие (многорядный) или отсутствие (однорядный) в составе пласта клеток разной формы (в т.ч. разных типов клеток). По сути дела, этот классифицирующий критерий основан на одном из признаков, отличающих разные клетки – расположение их ядер по отношению к базальной мембране. Форма клеток. В однослойном эпителии учитывают отношение высоты к толщине клеток. По этому признаку различают плоский, кубический и цилиндрический пласты эпителия. В многослойном эпителии учитывают форму клеток поверхностного слоя. Однослойные пласты (плоский, кубический, цилиндрический). Все клетки контактируют с базальной мембраной. Однорядный эпителий – ядра клеток расположены в один ряд, т.е. на одинаковом расстоянии от базальной мембраны. Такой эпителий представлен одинаковыми клетками (например, однослойный эпителий канальцев почки). Многорядный – ядра клеток расположены в несколько рядов, т.е. на различном расстоянии от базальной мембраны. Этот эпителий представлен клетками различной величины и формы. Типичный пример однослойного многорядного эпителия – мерцательный эпителий слизистой оболочки воздухоносных путей.

Многослойные эпителии подразделяют на многослойный плоский ороговевающий, многослойный плоский неороговевающий и многослойный переходный эпителии. Такие пласты складываются из пролиферативных единиц.

Рис. 5-2. Эпителиальные пласты. А – однослойный плоский; Б – однослойный кубический; В – однослойный цилиндрический каёмчатый; Г – однослойный цилиндрический многорядный мерцательный; Д – многослойный плоский неороговевающий; Е – многослойный переходный в растянутом состоянии; Ж – многослойный переходный в обычном состоянии. [17]

• Многослойный плоский ороговевающий эпителий (эпидермис) присутствует в коже и имеет роговой слой, состоящий из плотно упакованных роговых чешуек, содержащих ковалентно связанные с плазмолеммой нерастворимые белки.

Читайте также:  Микро сосуды на ногах

• Многослойный плоский неороговевающий эпителий не содержит рогового слоя.

• Многослойный переходный эпителий. Его поверхностные клетки имеют особую организацию (см. рис. 14-22, рис. 14-23). При растяжении стенки органа поверхностные клетки меняют форму таким образом, что целостность эпителиального пласта не нарушается.

Функции эпителиев

Функции эпителиев весьма разнообразны. Это группы транспортных, секреторных, барьерных и защитных функций.

Транспорт газов (O2 и CO2) через эпителий альвеол лёгких; аминокислот и глюкозы при помощи специальных транспортных белков в эпителии кишки; IgA и других молекул на поверхность эпителиальных пластов.

Эндоцитоз, пиноцитоз. Эпителиальные клетки участвуют в пиноцитозе (например, эпителий почечных канальцев) и в опосредуемом рецепторами эндоцитозе (например, поглощение холестерина вместе с ЛНП или трансферрина большинством эпителиальных клеток).

Секреция. Экзоцитоз слизи, белков (гормонов, факторов роста, ферментов). Слизь вырабатывается специальными слизистыми клетками эпителия желудка и половых путей, бокаловидными клетками в эпителии кишки, трахеи и бронхов. Гормоны и факторы роста вырабатываются эндокринными клетками.

Барьерная. Разграничение сред путём образования надёжных барьеров из эпителиальных клеток, связанных плотными контактами (например, между эпителиальными клетками слизистой оболочки желудка и кишки).

Защита организма от повреждающего действия физических и химических факторов внешней среды.

Эпителиальные железы

Железы выполняют секреторную функцию, различают экзокринные и эндокринные железы. Экзокринные железы вырабатывают продукт (секрет), предназначенный для выделения на поверхность кожи и слизистых оболочек. Эндокринные железы синтезируют гормоны, поступающие во внутреннюю среду организма. Как эндокринные, так и экзокринные железы могут быть одноклеточными или многоклеточными (рис. 5-3).

Эндокринные железы

Эндокринные железы (рис. 5-4) не имеют выводных протоков и вырабатывают гормоны, поступающие во внутреннюю среду. Характеристика разных эндокринных желёз дана в главе 9.

Рис. 5-3. Экзокринные железы внутри- и внеэпителиальные. Бокаловидная клетка – одноклеточная внутриэпителиальная экзокринная железа. Эпителиальный пласт может содержать группы экзокринных секреторных клеток. Чаще всего они отделяются от пласта в виде концевого секреторного отдела, связанного с поверхностью эпителия выводным протоком. [17]

Экзокринные железы

Экзокринные железы (рис. 5-4) выделяют секреты во внешнюю среду. Экзокринные железы могут быть окружены соединительнотканной капсулой или содержать соединительнотканные перегородки – септы, разделяющие железу на доли и более мелкие дольки. Эпителиальные клетки секреторных отделов и выводных протоков – паренхима железы. Окружающие и поддерживающие их соединительнотканные элементы – строма железы.

Экзокринные железы состоят из секреторных клеток, образующих секреторный (концевой) отдел, и выводного протока. В состав секреторного отдела, кроме железистых (секреторных) клеток, могут входить миоэпителиальные клетки (см. рис. 7-30). Они образуют длинные отростки, охватывающие снаружи концевые отделы. Сокращаясь, миоэпителиальные клетки облегчают продвижение секрета в выводной проток. Железистая клетка синтезирует, накапливает, хранит и выделяет секрет. В клетках, вырабатывающих белковый секрет (см. рис. 12-56 и рис. 12-64), хорошо развита гранулярная эндоплазматическая сеть, активно функционирует комплекс Гольджи. Гладкая эндоплазматическая сеть выражена в клетках, вырабатывающих небелковые секреты (например, стероидные гормоны, см. рис. 9-25). Выводной проток служит для оттока секрета из железы. В крупных железах различают внутридольковые, междольковые, междолевые и главный протоки.

Рис. 5-4. Развитие и строение экзокринных и эндокринных желёз. В результате индукционных взаимодействий между клетками эпителия и происходящей из мезенхимы подлежащей соединительной ткани (А) эпителиальные клетки усиленно размножаются и образуют вырост, постепенно углубляющийся в соединительную ткань (Б). Клетки в области верхушки выроста дифференцируются в секреторные, а остальные формируют выводной проток железы (В). Если клетки секреторного отдела утрачивают связь с эпителиальным пластом, формируется эндокринная железа (Г). Она состоит из скоплений эндокринных клеток, окружённых соединительной тканью с многочисленными кровеносными капиллярами. Два варианта организации эндокринной железы (Д), сверху – островок, внизу – фолликул. В последнем случае гормоны из эндокринных клеток поступают в просвет фолликула, где они хранятся и откуда транспортируются в кровь. [17]

Рис. 5-5. Классификация экзокринных желёз. А – простая трубчатая неразветвлённая; Б – простая альвеолярная неразветвлённая; В – сложная альвеолярно-трубчатая неразветвлённая; Г – простая альвеолярная разветвлённая; Д – сложная альвеолярная. [17]

Классификация. Железы классифицируют по следующим критериям: форма и ветвление секреторного отдела, ветвление выводного протока, тип секрета (рис. 5-5). В зависимости от формы секреторного отдела различают альвеолярные, трубчатые и смешанные (альвеолярно-трубчатые) железы; в зависимости от ветвления секреторного отдела – разветвлённые и неразветвлённые. Форма выводного протока определяет деление желёз на простые (проток не ветвится) и сложные (проток ветвится). От типа секрета зависит разделение на серозные (белковые), слизистые и белково-слизистые железы. Способ секреции. Различают несколько вариантов отделения секрета (рис. 5-6). Эккриновый (мерокриновый) – выделение секрета путём экзоцитоза (слюнные железы). Апокриновый – отделение секрета вместе с фрагментом апикальной части секреторной клетки (молочная железа). Голокриновый – полное разрушение секреторной клетки (сальная железа).

Рис. 5-6. Способы выведения секрета из клетки. А. Мерокриновый (эккриновый): выделение секрета путём экзоцитоза; Б. Апокриновый: отделение фрагментов апикальной части секреторной клетки, содержащих секреторный продукт. [17]

Источник