Опыт на сообщающиеся сосуды
ВВЕДЕНИЕ.
Что такое вода?
Этот вопрос совсем не так неразумен, как это может показаться. В самом деле, разве вода — это только та бесцветная жидкость, что налита в стакан? Океан, покрывающий почти всю нашу планету, всю нашу чудесную Землю, в котором миллионы лет назад зародилась жизнь, — это вода. Тучи, облака, туманы, несущие влагу всему живому на земной поверхности, — это ведь тоже вода. Бескрайние ледяные пустыни полярных областей, снеговые покровы, застилающие почти половину планеты, — и это вода. Прекрасно, невоспроизводимо бесконечное многообразие красок солнечного заката, его золотых и багряных переливов; торжественны и нежны краски небосвода при восходе солнца. Этот великий художник природы — вода. Кроме того, разве все секреты воды открыты учеными? На этот вопрос сможет ответить только время. Почему нас заинтересовала вода?
Мы хотим узнать, может ли вода течь вверх?
Гипотеза: вода может течь вверх.
Цель исследования: исследовать, может ли вода течь вверх.
Задачи:
1. Изучить информацию о свойствах воды, используя научно–популярную литературу;
2. Провести физические опыты по исследованию свойств воды;
3. Выяснить, когда и при каких условиях вода поднимается вверх;
4. Сформулировать выводы.
При подготовке работы была изучена различная литература, изучены материалы Интернет–сайтов, применены знания, полученные на уроках окружающего мира и на кружке “Калейдоскоп наук”, проведен ряд опытов.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Действие силы тяжести
Если вы выпустите книгу из рук, она неизбежно упадет на пол. “Виновата” в этом сила тяжести, которая притягивает все без исключения объекты к центру Земли. А подняв упавшую книгу, вы заметите, что ее внешний вид нисколько не изменился. Она – твердая, а твердые предметы сохраняют свою первоначальную форму. Если, конечно, не прикладывать к ним какую – либо специальную силу.
Теперь представьте себе, что упала не книга, а стакан с водой. Вода выплеснется и в беспорядке растечется. В самом деле, жидкость собственной формы не имеет. Она лишь занимает тот объем, ту форму, в которую налита. Все та же сила тяжести заставляет ее стремиться к самой низкой точке. Одним словом, где вода — там самое низкое место. Почему реки впадают в море? Просто уровень воды в морях ниже. Любая река как бы наклонена к тому морю, в которое она впадает. Ярким доказательством тому, что вода притягивается к Земле и стремится занять самый низкий уровень, являются водопады.
Сообщающиеся сосуды
Конечно, в обычном состоянии вода не сможет подниматься по склону, тем не менее, инженерам удалось заставить ее пересекать горные перевалы. Для этого оказалось достаточным… поместить воду в трубы. Именно так! Вода, бегущая в трубе со склона, давит на массы воды в трубе, поднимающейся в гору. И они, эти тысячи тонн воды, текут вверх! Правда, выше головы не прыгнешь: вода не поднимется выше своего первоначального уровня – высоты первой горы, с которой стекает. Но человек всегда найдет возможность сделать ту точку, из которой вытекает вода, самой высокой, и тогда никакие перевалы ему не страшны!
ЧЕГО НЕ ЗНАЛИ ДРЕВНИЕ?
Жители современного Рима до сих пор пользуются остатками водопровода, построенного еще древними: солидно возводили римские рабы водопроводные сооружения.
Не то приходится сказать о познаниях римских инженеров, руководивших этими работами; они явно недостаточно были знакомы с основами физики. Взгляните на прилагаемый рисунок, воспроизведенный с картины Германского музея в Мюнхене. Вы видите, что римский водопровод прокладывался не в земле, а над ней, на высоких каменных столбах. Для чего это делалось? Разве не проще было прокладывать в земле трубы, как делается теперь? Конечно, проще, но римские инженеры того времени имели весьма смутное представление о законах сообщающихся сосудов. Они опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода должна течь вверх, — и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути (а для этого требовалось нередко либо вести воду в обход, либо возводить высокие арочные подпоры). Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из–за незнания элементарного закона физики!
ЧЕГО НЕ ЗНАЛИ МЫ?
Исследуя проблему воды, мы столкнулись с задачей. Перед нами было два кофейника одинаковой ширины: один высокий, другой — низкий. Какой из них вместительнее? В какой из этих кофейников можно налить больше жидкости?
Мы, не подумав, решили, что высокий кофейник вместительнее низкого. Однако когда стал лить жидкость в высокий кофейник, то налили его только до уровня отверстия его носика — дальше вода начала выливаться. А так как отверстия носика у обоих кофейников на одной высоте, то низкий кофейник оказался столь же вместительным, как и высокий с коротким носиком.
Это и понятно: в кофейнике и в трубке носика, как во всяких сообщающихся сосудах, жидкость должна стоять на одинаковом уровне, несмотря на то, что жидкость в носике весит гораздо меньше, чем в остальной части кофейника. Если же носик недостаточно высок, вы никак не нальете кофейник доверху: вода будет выливаться. Обычно носик устраивается даже выше краев кофейника, чтобы сосуд можно было немного наклонять, не выливая содержимого.
Капиллярные явления
При определенных обстоятельствах вода способна самопроизвольно подниматься вверх. Если поместить достаточно тонкую трубку (например, соломинку) в сосуд с водой, уровень воды в трубке поднимается выше уровня воды в сосуде. Разница между уровнями воды в сосуде и в трубке будет тем больше, чем меньше внутренний диаметр трубки. Способность воды подниматься в трубке с достаточно узким каналом – один из примеров, так называемых капиллярных явлений, благодаря которым растения способны доставлять воду из почвы к ветвям и листьям. Эти же явления помогают крови циркулировать в человеческом теле, особенно в капиллярах – мельчайших кровеносных и лимфатических сосудах. Кроме того, это происходит всегда и повсеместно. Сама поднимается вода вверх в почве, смачивая всю толщу земли от уровня грунтовых вод. Сама поднимается вода вверх по капиллярным сосудам дерева и помогает растению доставлять растворенные питательные вещества на большую высоту — от глубоко скрытых в земле корней к листьям и плодам. Сама движется вода вверх в порах промокательной бумаги, когда нам приходится высушивать кляксу, или в ткани полотенца, когда вытираем лицо.
Атмосферное давление
В старину – в 17–18 веках – вельможи забавлялись следующей поучительной игрушкой: изготовляли кувшин, в верхней части которой имелись крупные узорчатые вырезы. Такой кувшин, налитый вином, предлагали незнатному гостю, над которым можно было безнаказанно посмеяться. Как пить из нее? Наклонить нельзя: вино польется из множества отверстий, а до рта не достигнет ни капли. Случится, как в сказке:
Мед, пиво пил,
Да усы лишь обмочил.
–Как выпить содержимое?
Надо заткнуть отверстие В, взять в рот носик и втянуть в себя жидкость, не наклоняя сосуда. Вино поднимется через отверстие Е по каналу внутри ручки, далее по его продолжению С внутри верхнего края кувшина и достигнет носика.
ПРАКТИЧЕСКАЯ ЧАСТЬ
Для выяснения того, как вода может течь вверх, мы провели ряд опытов.
Свои наблюдения мы занесли в таблицу:
Опыт 1 – с фонтаном
Для наблюдения используется опытный макет фонтана (два сообщающихся сосуда, соединенных резиновой трубкой). В один из сосудов (резервуар) наливается вода. Другой сосуд имеет отверстие, из которого “бьет фонтан”. Резервуар с водой опускается вниз и поднимается вверх. Вода в сообщающихся сосудах устанавливается на одинаковом уровне. Если резервуар поднимать, то вода сама поднимается вверх (из фонтана).
Опыт 2 – с цветком
Для опыта отбираются несколько цветков на стебле. В воде растворяется марганцево–кислый калий. Вода подкрашивается для того, чтобы можно было наблюдать за поднятием жидкости по стеблю. В подкрашенную воду опускаются цветы. Через некоторое время становится заметно, что подкрашенная вода сама поднимается вверх по стеблю. Ей помогает в этом атмосферное давление. При этом наблюдаются капиллярные явления. Через продолжительное время подкрашенная вода проникает даже в цветы.
Опыт 3 – с пробиркой
Для опыта используется: пробирка химическая, сосуд с горячей водой, сосуд с холодной подкрашенной водой.
Пробирка опускается в горячую воду так, чтобы открытый конец был вверху. Воздух в пробирке некоторое время прогревается. Затем открытый конец пробирки закрывается пластилином или большим пальцем. Пробирка очень быстро переворачивается и опускается в сосуд с холодной водой. Холодная вода сама начинает подниматься вверх. В этом воде помогает атмосферное давление.
В горячей воде воздух в пробирке прогревается, расширяется, частично выходит из пробирки. В холодной воде воздух сжимается. Атмосферное давление подталкивает воду в пробирку.
Опыт 4 – со шприцем
Для опыта используется: шприц демонстрационный или медицинский и сосуд с подкрашенной водой.
Вначале опыта поршень шприца до упора продвигается к отверстию шприца. После этого отверстие шприца опускается в подкрашенную воду. Поршень подтягивается вверх. Вода сама начинает подниматься вверх за поршнем.
В этом воде помогает атмосферное давление, которое подталкивает воду в разреженное пространство.
Опыт 5 – с сообщающимися сосудами
Для проведения опыта используются: электрическая плитка, теплоприемник, манометр, резиновая трубка, подкрашенная жидкость.
В сообщающиеся сосуды манометра наливается подкрашенная вода. Вода устанавливается на одинаковом уровне в обоих сосудах. Один из сообщающихся сосудов соединяется с теплоприемником резиновой трубкой. Разогретая электрическая плитка располагается напротив теплоприемника. Вода в одной из трубок сама начинает подниматься.
От разогретой плитки к теплоприемнику доходят тепловые лучи. Воздух в теплоприемнике нагревается, расширяется, давит на воздух над жидкостью в том сосуде, который соединен резиновой трубкой с теплоприемником. В этой трубочке вода начинает опускаться, а в другой трубке вода начинает подниматься.
Опыт 6 – с термометром
При проведении опыта сначала нужно рассмотреть шкалу термометра и определить температуру воздуха. Резервуар термометра удерживать некоторое время в ладони или опустить в горячую воду. Жидкость сама поднимается вверх по столбику. Резервуар термометра опустить в лед. Жидкость сама опускается.
При нагревании жидкость расширяется и поднимается по столбику. При охлаждении объем жидкости уменьшается, и жидкость опускается вниз.
ЗАКЛЮЧЕНИЕ
Все ли свойства воды понятны ученым!
Конечно, нет! Вода — загадочное вещество.
Недавно было обнаружено новое необыкновенное явление. Оказалось, что вода на Земле изменяет свою природу в зависимости от того, что происходит на Солнце и в космосе. Было замечено, что космические причины влияют на характер протекания в воде некоторых химических процессов, например на скорость появления осадков. Почему — неизвестно.
Многие наблюдения и факты говорят о том, что талая вода обладает особыми свойствами — она более благоприятна для развития живых организмов. Почему — тоже неизвестно.
Но для себя мы поняли, что:
– вода может двигаться вверх;
– вода может подниматься благодаря атмосферному давлению, например, в сообщающихся сосудах или капиллярах.
Можно не сомневаться, что все загадки будут успешно разрешены наукой. Будет открыто еще немало новых, более удивительных загадочных свойств воды — самого необыкновенного вещества в мире.
Литература
1. Всё обо всём. Популярная энциклопедия для детей.– М.: Слово, 1994.
2. Перельман Я. И. Занимательная физика. Книга 2.– М.: Наука, 1979.
Интернет–ресурсы
1. https://potomy.ru/things/149.html
2. https://www.aquaexpert.ru/enc/termin/water/
3. https://the-mostly.narod.ru/misc/fontain.html
4. https://brainmystery.ru/kogda-voda-techet-vverx/
5. https://www.origins.org.ua/page.php?id_story=263
6. https://class-fizika.narod.ru/p135.htm
Работу выполнили:
1. Камьянов Иван, 2–а класс
2. Митина Мария, 2–а класс
Руководители:
1. Беляевская Т.Я., учитель начальных классов
2. Дубас С.П., учитель физики
МОУ СОШ № 12 ЗАТО Шиханы Саратовской области
Источник
Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.
Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.
Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:
Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.
Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.
Основное уравнение гидростатики
P = P1 + ρgh
где P1 – это среднее давление на верхний торец призмы,
P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.
ρgh – сила тяжести (вес призмы).
Звучит уравнение так:
Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.
Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости
Доказательство закона сообщающихся сосудов
Возвращаемся к разговору про сообщающиеся сосуды.
Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.
Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.
Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики
P = P1 + ρgh1
если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.
Это давление можно определить следующим образом
P = P2 + ρgh2
где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2
P1 + ρ1gh1 = P2 + ρ2gh2
В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем
ρ1h1 = ρ2h2
или
ρ1 / ρ2 = h2 / h1
т.е. закон сообщающихся сосудов состоит в следующем.
В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.
Свойства сообщающихся сосудов
Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.
Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.
Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.
В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.
Приборы основанные на законе сообщающихся сосудов
На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.
Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.
В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.
Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.
Применение сообщающихся сосудов
Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.
Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.
Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.
Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.
В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.
Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.
В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.
Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.
Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.
Видео по теме
Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.
Вместе со статьей “Закон сообщающихся сосудов и его применение.” читают:
Источник