Орган дыхательной системы человека это сосуды
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 января 2019; проверки требуют 45 правок.
Дыха́тельная систе́ма челове́ка – совокупность органов, обеспечивающих функцию внешнего дыхания человека (газообмен между вдыхаемым атмосферным воздухом и циркулирующей по малому кругу кровообращения кровью).
Газообмен осуществляется в альвеолах лёгких, и в норме направлен на захват из вдыхаемого воздуха кислорода и выделение во внешнюю среду образованного в организме углекислого газа.
Взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту, однако частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту)[1]. Взрослый человек делает 15-17 вдохов/выдохов в минуту, а новорождённый ребёнок делает 1 вдох в секунду. Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом.
Обычный спокойный вдох связан с деятельностью мышц диафрагмы и наружных межрёберных мышц. При вдохе диафрагма опускается, рёбра поднимаются, расстояние между ними увеличивается. Обычный спокойный выдох происходит в большой степени пассивно, при этом активно работают внутренние межрёберные мышцы и некоторые мышцы живота. При выдохе диафрагма поднимается, рёбра перемещаются вниз, расстояние между ними уменьшается[2].
По способу расширения грудной клетки различают 2 типа дыхания:[источник не указан 1817 дней]
- Грудной тип дыхания (расширение грудной клетки производится путём поднятия рёбер), чаще наблюдается у женщин
- Брюшной тип дыхания (расширение грудной клетки производится путём уплощения диафрагмы), чаще наблюдается у мужчин
Строение[править | править код]
Схема дыхательной системы человека
Дыхательные пути[править | править код]
Различают верхние и нижние дыхательные пути. Символический переход верхних дыхательных путей в нижние осуществляется в месте пересечения пищеварительной и дыхательной систем в верхней части гортани.
Система верхних дыхательных путей состоит из полости носа (лат. cavitas nasi), носоглотки (лат. nasopharynx) и ротоглотки (лат. mesopharynx)[3][4], а также частично ротовой полости, так как[источник не указан 76 дней] она тоже может быть использована для дыхания. Система нижних дыхательных путей состоит из гортани (лат. larynx, иногда[когда?] её относят[кто?] к верхним дыхательным путям[источник не указан 77 дней]), трахеи (др.-греч. τραχεῖα (ἀρτηρία)), бронхов (лат. bronchi)[3][4], лёгких (лат. pulmones)[источник не указан 76 дней].
Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц и диафрагмы. В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400-500 мл воздуха. Этот объём воздуха называют «дыхательным объёмом» (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. Максимально глубокий вдох составляет около 2 000 мл воздуха. После максимального выдоха в лёгких остаётся воздух в количестве около 1 500 мл, называемый «остаточным объёмом лёгких». После спокойного выдоха в лёгких остаётся примерно 3 000 мл. Этот объём воздуха называют «функциональной остаточной ёмкостью» (ФОЁ) лёгких. Дыхание – одна из немногих функций организма, которое может быть контролируемо сознательно и неосознанно.
Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное). Особые виды дыхательных движений наблюдают при икоте и смехе. При частом и поверхностном дыхании возбудимость нервных центров повышается, а при глубоком – наоборот, снижается.
Дыхательные органы[править | править код]
Дыхательные пути обеспечивают связи окружающей среды с главными органами дыхательной системы – лёгкими. Лёгкие (лат. pulmones, др.-греч. πνεύμων) расположены в грудной полости в окружении костей и мышц грудной клетки. В лёгких осуществляется газообмен между атмосферным воздухом, достигшим лёгочных альвеол (паренхимы лёгких), и кровью, протекающей по лёгочным капиллярам, которые обеспечивают поступление кислорода в организм и удаление из него газообразных продуктов жизнедеятельности, в том числе – углекислого газа. Благодаря функциональной остаточной ёмкости (ФОЁ) лёгких в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше дыхательного объёма (ДО). Только 2/3 ДО достигает альвеол, который называют «объёмом альвеолярной вентиляции». Без внешнего дыхания человеческий организм обычно может прожить до 5 минут (так называемая «клиническая смерть»), после чего наступают потеря сознания, необратимые изменения в мозге и его смерть (биологическая смерть).
У человека 2 лёгких: правое и левое. Правое делится на 3 доли (верхняя, средняя, нижняя) с помощью горизонтальной и косой щелей, в то время как левое – лишь на 2 (верхняя и нижняя доли) с помощью 1 косой щели[5].
Функции дыхательной системы[править | править код]
Основные функции – дыхание, газообмен.
Кроме того, дыхательная система участвует в таких важных функциях, как терморегуляция, голосообразование, обоняние, увлажнение вдыхаемого воздуха. Лёгочная ткань также играет важную роль в таких процессах, как: синтез гормонов, водно-солевой и липидный обмен. В обильно развитой сосудистой системе лёгких происходит депонирование крови. Дыхательная система также обеспечивает механическую и иммунную защиту от факторов внешней среды.
Газообмен[править | править код]
Газообмен – обмен газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями; из организма выделяются образующийся в нём углекислый газ и незначительное количество других газообразных продуктов метаболизма. Газообмен необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а, следовательно, и сама жизнь. Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются CO2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и, в конечном итоге, выделяющегося из него CO2 зависит не только от количества потребляемого O2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Отношение удаляемого из организма объёма CO2 к поглощённому за то же время объёму O2 называют «дыхательным коэффициентом», который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов (у человека при смешанной пище дыхательный коэффициент равен 0,85-0,90). Количество энергии, освобождающееся на 1 л потребленного O2 (калорический эквивалент кислорода), равно 20,9 кДж (5 ккал) при окислении углеводов и 19,7 кДж (4,7 ккал) при окислении жиров. По потреблению O2 в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии. Газообмен (соответственно, и расход энергии) у пойкилотермных животных (холоднокровных) понижается с понижением температуры тела. Такая же зависимость обнаружена и у гомойотермных животных (теплокровных) при выключении терморегуляции (в условиях естественной или искусственной гипотермии); при повышении температуры тела (при перегреве, некоторых заболеваниях) газообмен увеличивается.
При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. Он увеличивается также после приёма пищи, особенно богатой белками (так называемое «специфически-динамическое действие пищи»). Наибольших величин газообмен достигает при мышечной деятельности. У человека при работе умеренной мощности он увеличивается, через 3-6 минут после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. При работе большой мощности газообмен непрерывно возрастает; вскоре после достижения максимального для данного человека уровня (максимальная аэробная работа) работу приходится прекращать, так как потребность организма в O2 превышает этот уровень. В первое время после окончания работы сохраняется повышенное потребление O2, используемого для покрытия кислородного долга, то есть для окисления продуктов обмена веществ, образовавшихся во время работы. Потребление O2 может увеличиваться с 200-300 мл/мин. в состоянии покоя до 2000-3000 при работе, а у хорошо тренированных спортсменов до 5000 мл/мин. Соответственно, увеличиваются выделение CO2 и расход энергии; одновременно происходят сдвиги дыхательного коэффициента, связанные с изменениями обмена веществ, кислотно-щелочного равновесия и лёгочной вентиляции. Расчёт общего суточного расхода энергии у людей разных профессий и образа жизни, основанный на определениях газообмена важен для нормирования питания. Исследования изменений газообмена при стандартной физической работе применяют в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в газообмене. Сравнительное постоянство газообмена при значительных изменениях парциального давления O2 в окружающей среде, нарушениях работы органов дыхания и тому подобного обеспечивается приспособительными (компенсаторными) реакциями систем, участвующих в газообмене и регулируемых нервной системой. У человека и животных газообмен принято исследовать в условиях полного покоя, натощак, при комфортной температуре среды (18-22 °C). Количества потребляемого при этом O2 и освобождающейся энергии характеризуют основной обмен. Для исследования применяют методы, основанные на принципе открытой либо закрытой системы. В первом случае определяют количество выдыхаемого воздуха и его состав (при помощи химических или физических газоанализаторов), что позволяет вычислять количества потребляемого O2 и выделяемого CO2. Во втором случае дыхание происходит в закрытой системе (герметичной камере либо из спирографа, соединённого с дыхательными путями), в которой поглощается выделяемый CO2, а количество потребленного из системы O2 определяют либо измерением равного ему количества автоматически поступающего в систему O2, либо по уменьшению объёма системы. Газообмен у человека происходит в альвеолах лёгких и в тканях тела.
Дыхательная недостаточность[править | править код]
Дыха́тельная недоста́точность (ДН) – патологическое состояние, характеризующееся одним из двух типов нарушений:
- Система внешнего дыхания не может обеспечить нормальный газовый состав крови
- Нормальный газовый состав крови обеспечивается за счёт повышенной работы системы внешнего дыхания
Асфиксия[править | править код]
Асфи́кси́я (от др.-греч. ἀ- – «без-» и σφύξις – «пульс», буквально – «отсутствие пульса», в русском языке допускают ударение на второй или третий слог) – удушье, обусловленное кислородным голоданием и избытком углекислоты в крови и тканях, например, при сдавливании дыхательных путей извне (удушение), закрытии их просвета отёком, падении давления в искусственной атмосфере (либо системе обеспечения дыхания) и так далее. В литературе механическую асфиксию определяют как «кислородное голодание, развившееся в результате физических воздействий, препятствующих дыханию, и сопровождающееся острым расстройством функций центральной нервной системы и кровообращения…» или как «нарушение внешнего дыхания, вызванное механическими причинами, приводящее к затруднению или полному прекращению поступления в организм кислорода и накоплению в нём углекислоты». Первая помощь при асфиксии – восстановление функции внешнего дыхания, традиционно используют принудительное вдувание воздуха в лёгкие больного. Этот метод, названный «рот в рот» и «рот в нос», используют повсеместно в качестве немедленной помощи до приезда врача.[6]
См. также[править | править код]
- Физиология дыхания
- Нормальная анатомия человека
Примечания[править | править код]
- ↑ Физиология человека. В 3-х т. Т. 2. Пер с англ. / Под ред. Р. Шмидта и Г. Тевса. – М.: Мир,N 5-03-002544-8.
- ↑ Дыхательные мышцы / С. С. Михайлов // Большая медицинская энциклопедия / гл. ред. Б. В. Петровский. – 3-е изд. – М. : Советская энциклопедия, 1977. – Т. 7 : Дегидразы – Дядьковский. – С. 529. – 150 000 экз.
- ↑ 1 2 Сапин М. Р., Никитюк Д. Б., Ревазов В. С. Анатомия человека / В 2-х томах, том 1. Изд. 5-е, перераб. и доп. // М.: Медицина, 2001. – 640 с., ил. ISBN 5-225-04585-5. С. 581.
- ↑ 1 2 Никитюк Б. А., Лукоянов Ю. Е. Дыхательная система // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. – 3-е изд. – М. : Советская энциклопедия, 1977. – Т. 7 : Дегидразы – Дядьковский. – 548 с. : ил.
- ↑ Э. И. Борзяк, Л. И. Волкова, Е. А. Добровольская и др. Анатомия человека / под ред. М. Р. Сапина. – М.: Медицина, 1997. – С. 488. – 544 с. – ISBN 5-225-04443-3.
- ↑ Медицинская энциклопедия. Асфиксия
Литература[править | править код]
- Дыхательная система // Малая медицинская энциклопедия (том 10+, стр. 209).
- Книпович Н. М. Дыхательные органы // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). – СПб., 1890-1907.
- Самусев Р. П. Атлас анатомии человека / Р. П. Самусев, В. Я. Липченко. – М., 2002. – 704 с.: ил.
- Дыхательный коэффициент // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). – 3-е изд. – М.: Сов. энциклопедия, 1972. – Т. VIII. – С. 564. – 592 с.
Ссылки[править | править код]
- Дыхательная система из Малой медицинской энциклопедии
Источник
Дыхательная система – совокупность органов, обеспечивающих поступление кислорода из окружающего воздуха в дыхательные пути, и осуществляющих газообмен, т.е. поступление кислорода в кровоток и выведение углекислого газа из кровотока обратно в атмосферу. Однако дыхательная система – это не только обеспечение организма кислородом – это еще и человеческая речь, и улавливание различных запахов, и теплообмен.
Органы дыхательной системы человека условно делятся на дыхательные пути, или проводники, по которым воздушная смесь поступает к легким, и легочную ткань, или альвеолы.
Дыхательные пути по уровню прикрепления пищевода условно делятся на верхние и нижние. К верхним относятся:
- нос и его придаточные пазухи
- ротоглотка
- гортань
К нижним дыхательным путям относятся:
- трахея
- главные бронхи
- бронхи следующих порядков
- терминальные бронхиолы.
Носовая полость – первый рубеж при поступлении воздуха в организм. На пути пылевых частиц встают многочисленные волоски, расположенные на слизистой полости носа, и очищают проходящий воздух. Носовые раковины представлены хорошо кровоснабжаемой слизистой и, проходя сквозь извитые носовые раковины, воздух не только очищается, но и согревается.
Также нос – орган, благодаря которому мы наслаждаемся ароматом свежей выпечки, или точно можем определить местонахождение общественного туалета. А все потому, что на слизистой верхней носовой раковины расположены чувствительные обонятельные рецепторы. Их количество и чувствительность генетически запрограммированы, благодаря чему парфюмеры создают запоминающиеся ароматы духов.
Проходя сквозь ротоглотку, воздух попадает в гортань. Как же получается, что пища и воздух проходят через одни и те же части тела и не смешиваются? При глотании надгортанник прикрывает дыхательные пути, и пища попадает в пищевод. При повреждении надгортанника человек может поперхнуться. Попадание еды в дыхательные пути требует немедленной помощи и может даже привести к смерти.
Гортань состоит из хрящей и связок. Хрящи гортани видны невооруженным глазом. Самый крупный из хрящей гортани – щитовидный хрящ. Его строение зависит от половых гормонов и у мужчин он сильно выдвигается вперед, формируя адамово яблоко, или кадык. Именно хрящи гортани служат ориентиром для врачей при проведении трахеотомии или коникотомии – операций, которые проводятся, когда инородное тело или опухоль перекрывают просвет дыхательных путей, и обычным способом человек не может дышать.
Дальше на пути воздуха встают голосовые связки. Именно проходя через голосовую щель и заставляя дрожать натянутые голосовые связки, человеку доступна не только функция речи, но и пение. Некоторые уникальные певцы могут заставить дрожать связки с частотой 1000 децибел и силой своего голоса взрывать хрустальные стаканы
(в России самым широким диапазоном голоса в пять октав обладает Светлана Феодулова – участница шоу «Голос-2»).
Через гортань и голосовые связки воздух поступает в трахею. Трахея анатомически делится на шейную и грудную части. Анатомическим ориентиром является яремная вырезка грудины.
Трахея имеет строение хрящевых полуколец. Передняя хрящевая часть обеспечивает беспрепятственное прохождение воздуха за счет того, что трахея не спадается. Сзади к трахее прилегает пищевод, и мягкая часть трахеи не задерживает прохождение пищи по пищеводу.
Дальше воздух по бронхам и бронхиолам, выстланным мерцательным эпителием, добирается до конечного отдела легких – альвеол. Легочная ткань, или альвеолы – конечные, или терминальные отделы трахеобронхиального дерева, похожие на слепо заканчивающиеся мешочки.
Множество альвеол формируют легкие. Легкие – парный орган. Природа позаботилась о своих нерадивых детях, и некоторые важные органы – легкие и почки – создала в двойном экземпляре. Человек может жить и с одним легким. Легкие расположены под надежной защитой каркаса из прочных ребер, грудины и позвоночника.
Биология. 9 класс. Человек. Методическое пособие. Вертикаль. ФГОС
Методическое пособие подготовлено к изданному в соответствии с ФГОС учебнику М.Р. Сапина, Н.И. Сонина «Биология. Человек. 9 класс». Пособие содержит подробные разработки уроков, включающие цели, основное содержание урока, планируемые результаты (личностные, метапредметные, предметные), необходимое для урока оборудование, а также изложение хода урока и дополнительную информацию для учителя.
Купить
Функции дыхательной системы
Интересно, что легкие лишены мышечной ткани и сами дышать не могут. Дыхательные движения обеспечивает работа мышц диафрагмы и межреберных мышц.
Человек совершает дыхательные движения благодаря сложному взаимодействию различных групп мышц межреберных, мышц брюшного пресса при глубоком дыхании, а самая мощная мышца, участвующая в дыхании, – диафрагма.
Наглядно представить работу дыхательных мышц поможет опыт с моделью Дондерса, описанный на странице 177 учебника «Биология 9 класс» под редакцией Пономаревой И.Н.
Легкие и грудная клетка выстланы плеврой. Плевра, которая выстилает легкие, называется легочной, или висцеральной. А та, которая покрывает ребра, – пристеночной, или париетальной. Строение дыхательной системы обеспечивает необходимый газообмен.
При вдохе мышцы растягивают легочную ткань, как умелый музыкант меха у баяна, и воздушная смесь атмосферного воздуха, состоящая из 21% кислорода, 79% азота и 0.03% углекислого газа поступает по дыхательным путям к конечному отделу, где оплетенные тонкой сетью капилляров альвеолы готовы принять кислород и отдать отработанный углекислый газ из человеческого тела. Состав выдыхаемого воздуха отличается значительно бо´льшим содержанием углекислого газа – 4%.
Чтобы представить масштаб газообмена, только подумайте, что площадь всех альвеол человеческого организма примерно равна волейбольной площадке.
Чтобы альвеолы не слипались, их поверхность выстлана сурфактантом – специальной смазкой, содержащей липидные комплексы.
Терминальные отделы легких густо оплетены капиллярами и стенка кровеносных сосудов тесно соприкасается со стенкой альвеол, что позволяет содержащемуся в альвеолах кислороду по разнице концентраций, без участия переносчиков, путем пассивной диффузии поступать в кровь.
Если вспомнить основы химии, а конкретно – тему растворимость газов в жидкостях, особо дотошные могут сказать: «Ерунда какая, ведь растворимость газов с повышением температуры уменьшается, а тут вы рассказываете, что кислород отлично растворяется в теплой, почти горячей – примерно 38-39°С, соленой жидкости».
И они правы, но забывают, что эритроцит содержит гемоглобин-захватчик, одна молекула которого может присоединить 8 атомов кислорода и транспортировать их к тканям!
В капиллярах кислород связывается с белком-переносчиком на эритроцитах и по легочным венам к сердцу возвращается насыщенная кислородом артериальная кровь.
Кислород участвует в процессах окисления, а клетка в результате получает необходимую для жизнедеятельности энергию.
Дыхание и газообмен – самые важные функции дыхательной системы, но далеко не единственные. Дыхательная система обеспечивает поддержание теплового баланса за счет испарения воды при дыхании. Внимательный наблюдатель замечал, что в жаркую погоду человек начинает чаще дышать. У людей, правда, этот механизм работает не так эффективно, как у некоторых животных, например у собак.
Гормональную функцию через синтез важных нейромедиаторов (серотонина, дофамина, адреналина) обеспечивают лёгочные нейроэндокринные клетки (PNE-pulmonary neuroendocrine cells). Также в легких синтезируются арахидоновая кислота и пептиды.
Комплект таблиц. Биология. 8-9 классы. Человек (12 таблиц)
Учебный альбом из 12 листов. Типы тканей. Головной мозг. Спинной мозг. Функции нервной системы. Строение и работа сердца. Связь кровообращения и лимфообращения. Дыхание. Пищеварение. Строение почки. Строение и функции кожи. Строение и типы костей. Строение мышц. Восприятие. Органы чувств..
Купить
Регуляция
Казалось бы, что тут сложного. Содержание кислорода в крови снизилось, и вот она – команда для вдоха. Однако на самом деле механизм значительно сложнее. Ученые до сих пор не разгадали механизм, благодаря которому человек дышит. Исследователи лишь выдвигают гипотезы, и только некоторые из них доказываются сложными экспериментами. Точно установлено лишь то, что истинного водителя ритма в дыхательном центре, подобного водителю ритма в сердце, нет.
В стволе мозга расположен дыхательный центр, который состоит из нескольких разрозненных групп нейронов. Выделяют три основных группы нейронов:
- дорсальная группа – основной источник импульсов, которые обеспечивают постоянный ритм дыхания;
- вентральная группа – контролирует уровень вентиляции легких и может стимулировать вдох или выдох в зависимости от момента возбуждения.Именно эта группа нейронов управляет мышцами брюшного пресса и живота для глубокого дыхания;
- пневмотаксический центр – благодаря его работе происходит плавная смена выдоха вдохом.
Для полноценного обеспечения организма кислородом нервная система регулирует скорость вентиляции легких через изменение ритма и глубины дыхания. Благодаря отлаженной регуляции даже активные физические нагрузки практически не влияют на концентрацию кислорода и углекислого газа в артериальной крови.
В регуляции дыхания участвуют:
- хеморецепторы каротидного синуса, чутко реагирующие на содержание газов О2 и СО2 в крови. Рецепторы расположены во внутренней сонной артерии на уровне верхнего края щитовидного хряща;
- рецепторы растяжения легких, расположенные в гладких мышцах бронхов и бронхиол;
- инспираторные нейроны, расположенные в продолговатом мозге и варолиевом мосту (делятся на ранние и поздние).
Сигналы с различных групп рецепторов, расположенных в дыхательных путях, передаются в дыхательный центр продолговатого мозга, где в зависимости от интенсивности и продолжительности формируется импульс к дыхательному движению.
Физиологи предположили, что отдельные нейроны объединяются в нейронные сети для регуляции последовательности смены фаз вдоха-выдоха, регистрации отдельными типами нейронов своего потока информации и изменения ритма и глубины дыхания в соответствии с этим потоком.
Расположенный в продолговатом мозге дыхательный центр контролирует уровень напряжения газов крови и регулирует вентиляцию легких с помощью дыхательных движений, чтобы концентрация кислорода и углекислого газа была оптимальной. Регуляция осуществляется при помощи механизма обратной связи.
Источник