От каких величин зависит давление жидкости на стенки сосуда
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2020; проверки требуют 7 правок.
Гидростатическое давление – давление столба жидкости над условным уровнем.
Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение P/w, то есть давление р на поверхность, равную единице, называется гидростатическим давлением[1].
Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах[1].
Вычисление[править | править код]
В каждой жидкости существует давление, обусловленное её собственным весом ; так как , то ; учтём, что и получим формулу .
Плотность жидкости зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением[2].
Для бытовых расчетов можно принять, что с ростом глубины на каждые 10 метров пресной воды, давление увеличивается на 0,1 МПа (1 атмосфера).
История открытия[править | править код]
Это основное свойство жидкостей было открыто и проверено на опыте Блезом Паскалем в 1653 г., хотя несколько ранее оно было уже известно Стевину[источник не указан 1320 дней].
Единица измерения[править | править код]
Единицей измерения давления в международной системе единиц является Паскаль. На практике гидростатическое давление часто измеряют в атмосферах, принимая за 1 атмосферу давление в 76 см ртутного столба, при температуре 0 °C при нормальном ускорении свободного падения 9,80665 м/с².
На основании гидростатического парадокса можно гидростатическое давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности.
Свойства[править | править код]
Гидростатический парадокс[править | править код]
Гидростатическое давление на тело не зависит от направления.
Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.
Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.
Закон Паскаля[править | править код]
Чем глубже, тем выше давление. (левая часть графика)
Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:
где:
– плотность [для пресной воды: ρ ≈ 1000 кг/м³] – ускорение свободного падения [для Европы: g ≈ 9,81 м/с²] – высота (здесь: жидкости) [м] – [Па]
⇒ = гидростатическое давление (p) зависит от высоты (h) жидкости.[4]
Примечания[править | править код]
Литература[править | править код]
- В. В. Лермантов. Гидростатическое давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). – СПб., 1893. – Т. VIIIa. – С. 655-656.
Источник
1. Значение давления столба жидкости
2. Эксперименты Паскаля
3. Гидростатический парадокс
Для понимания сути понятия «давление жидкости» нужно рассмотреть, что влияет на его формирование. Обычно рассматривают примеры по проще, а после переходят к изучению более сложных примеров. Гидростатическое давление в физике рассчитывается с учетом нескольких физических величин:
(p=ρgh) ,
где (p) – давление слоя жидкости, Па;
(ρ) – плотность жидкости, кг/м3;
(g) – ускорение свободного падения, м/с2;
(h) – высота столба жидкости, м.
Значение давления столба жидкости
Одной из величин, влияющих на давление жидкости, является высота столба жидкости, что находится в сосуде цилиндрической формы. Она обозначается буквой (h). Следует учесть, что для правильного определения давления жидкости сосуд должен иметь правильную форму – строго горизонтальное дно и вертикальные стенки. В такой ситуации давление жидкости в каждой точке сосуда будет одинаковым.
Для определения силы давления вводится понятие «площадь дна сосуда». При учете равного давления сила давления жидкости на дно сосуда рассчитается по формуле:
(F=ρghS).
Эта формула показывает, что сила давления соизмерима с весом жидкости, при условии использования сосуда правильной цилиндрической формы. Также доказано, что эти вычисления также применимы для расчета давления жидкости в сосудах самой разнообразной формы. Здесь действует правило, гласящее, что давление жидкости на дно сосуда равно во всех точках, при условии одинаковой высоты столба жидкости и площади дня сосуда. Но при этом реальный вес жидкости сосуда неровной формы может отличаться от ее силы давления. Он может быть больше либо меньше, но конечное значение, рассчитанное по вышеуказанной формуле, будет справедливым.
Эксперименты Паскаля
Паскаль был одним из первых ученых, кто изобрел базовые формулы для расчета гидростатического давления. Свои эксперименты он проводил при помощи установки, позже названной его именем. Основным отличием этого прибора было применение специальных подставок, на которых он фиксировал различные сосуды с жидкостями и производил расчеты. Сосуды были самой различной формы, благодаря чему эта установка стала прорывом в сфере исследования физических свойств жидкостей. Также на этом приборе представлялось возможным фиксирование сосуда без дна. При этом вместо него могла крепиться пластина. Она была расположена на одном из плечей коромысла весов.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Устанавливая и перемещая груз на противоположном конце коромысла ученый наполнял сосуд жидкостью. Во время возникновения силы давления жидкости, большей, чем вес груза, жидкость выливалась наружу через пластину. Измеряя высоту столба жидкости, Паскаль мог вычислить величину силы давления жидкости на дно сосуда. Он сравнивал эти значения с весом груза.
Он старался достичь большой силы давления при ограниченном количестве воды. Он просто увеличивал глубину столба жидкости. Еще Паскаль проводил испытания такого рода: к бочке, наполненной до краев и плотно закрытой крышкой, он присоединял длинную трубку, через которую добавлял воду. При повышении давления до определенного значения бочка не выдерживала и начинала протекать. И получалось так, что данный эффект достигался при малом объеме добавленной воды. Это значит, что именно высота трубки, иными словами, высота столба жидкости создавала разрушительное давление на дно бочки. Таким образом, к разрушению емкости привело критическое значение давления.
Также при изучении поведения жидкости Паскаль заметил, что наклон стенок сосуда играет важную роль при распределении давления. Имеют место излишки давления, направленного в разные стороны. Если сосуд сужается кверху, то давление будет действовать вверх. Подобный эксперимент можно провести самому, для этого нужна установка, подобная прибору Паскаля. Нужен поршень, переходящий в трубку, на котором статически крепится цилиндр. Трубка ставится вертикально, затем в нее заливается вода, при этом необходимо следить, чтобы объем над поршнем заполнялся равномерно, потом цилиндр нужно поднять вверх.
Можно сделать заключение, что давление является силой, что действует перпендикулярно на единицу площади. Давление измеряется в Паскалях (Па). Один Паскаль равняется силе воздействия в 1 Ньютон (Н), что действует на площадь, размером 1 м2.
Гидростатический парадокс
Гидростатический парадокс заключается в том, что давление жидкости не зависимо от ее объема и веса. Оно также не зависимо от формы сосуда, от размеров его дна, лишь только от высоты столба жидкости.
Не нашли что искали?
Просто напиши и мы поможем
Подобное явление называется парадоксом, так как оно противоречит привычным суждениям о физических свойствах жидкости. Опираясь на исследования Паскаля, можно утверждать, что давление жидкости зависит от ее плотности и глубины: (p=ρgh). Об этом гласит закон Паскаля: жидкость способна передавать давление во всех направлениях с одинаковой силой.
Гидростатическое давление возможно определить для любой точки объема жидкости, а также для стенок сосуда.
Источник
Что такое давление жидкости
Наука гидростатика исследует ситуации, когда движение в жидкости отсутствует или скорость пренебрежимо мала, и позволяет понять некоторые свойства такой важной гидродинамической величины, как давление.
Теорема
Давление – физическая величина, описывающая силу, которая действует перпендикулярно поверхности на единицу ее площади. Для ее обозначения используется символ р или Р.
На опору под действием силы тяжести давят и твердые, и сыпучие вещества, но их воздействие отличается от гидростатического давления. Воздействие твердого тела определяется его весом, жидкости – ее глубиной. В газе и жидкости давящее воздействие на поверхности создается за счет хаотических столкновений молекул и связано с другими параметрами состояния вещества – например, температурой Т и плотностью (rho.)
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Для жидкости, учитывая ее малую сжимаемость, вместо уравнения Клапейрона, учитывающего температуру и молярную массу газа, обычно используют условие несжимаемости, которое существенно упрощает уравнения гидроаэромеханики:
(rho = const.)
Сила гидростатического давления р на дно сосуда не зависит от его формы и изменяется пропорционально уровню налитой в сосуд жидкости и ее плотности в соответствии с основной гидростатической формулой:
(р = р_{0} + rhos gs h.)
(rho) здесь – плотность вещества, (р_{0}) – атмосферное давление, g – ускорение свободного падения, h – глубина погружения.
История открытия
Гидростатика как наука была достаточно хорошо известна еще в античные времена, поскольку она тесно связана с практической деятельностью людей. Для строительства лодок и кораблей, колодцев и различных гидравлических аппаратов, например, поршневых насосов, необходимо было понимать, как вода взаимодействует с твердыми материальными предметами.
Различие между давлением твердого тела и воды очень эффектно пояснил на опыте Блез Паскаль: всего лишь стакан воды, вылитый в высокую тонкую трубку, соединенную с наполненной водой закрытой бочкой, создал такое избыточное давление, что вода через щели брызнула наружу.
Определение
В 1653 году Паскаль сформулировал свой закон: давление, производимое на жидкость или газ, передается в любую точку одинаково.
Позже был сконструирован прибор, демонстрирующий действие закона Паскаля. Он называется шар Паскаля и представляет собой заполняемый водой шар с маленькими отверстиями, соединенный с цилиндрической рукояткой, внутри которой движется поршень. Внешнее давление, производимое поршнем, передается во все точки воды одинаково, и она выплескивается в виде одинаковых струек. Поэтому струйки, вытекающие из отверстий, расположенных в горизонтальной плоскости, оставляют на полу следы равной длины.
Факторы, влияющие на показатель
На давление жидкости могут влиять:
- ее плотность;
- атмосферное давление;
- температура;
- глубина сосуда;
- площадь дна сосуда.
Давление на дно и стенку сосуда
Закон Паскаля утверждает, что давление в любом месте покоящейся жидкости или газа по всем направлениям одинаково, причем оно одинаково передается по всему объему вещества. Таким образом, разницы между давлением на дно и на стенку нет.
Расчет давления жидкости на дно и стенки сосуда
Чтобы найти давление на дно сосуда, нужно взять приведенное выше основное уравнение гидростатики и подставить туда глубину, плотность и атмосферное давление.
В случае стенок непосредственно прилагать эту формулу можно только к бесконечно малым горизонтальным полоскам на боковых стенках сосуда. Чтобы рассчитать давление на стенки, нужно суммировать давление на все горизонтальные элементы их поверхности, используя правила интегрального исчисления. Паскаль, проведя эти расчеты, доказал, что от формы сосуда давление жидкости не зависит.
Единицы измерения
В международной системе единиц давление измеряется в Паскалях. Один Паскаль равен силе в один ньютон, производящей равномерное давление на единицу поверхности в один метр. Но на практике часто используют такую единицу измерения, как атмосфера, равную 76 см ртутного столба при нулевой температуре по Цельсию.
Определение
Атмосфера – внесистемная единица измерения, которая примерно означает давление атмосферы Земли на уровне Мирового океана.
Формулы расчета
Для описания процессов в гидравлических прессах или любых других системах, в которых давление собственно жидкостей ничтожно мало по сравнению с передаваемым им извне, используется формула закона Паскаля:
(р = frac{F}{S}.)
F – сила, с которой происходит воздействие на поверхности сосуда, S – площадь этой поверхности.
В учебных задачах обычно опускают такой параметр, как атмосферное давление, и используют для расчетов формулу:
(р = rhos gs h.)
Можно вывести эту формулу для сосудов, имеющих форму прямой призмы или цилиндра, из закона Паскаля.
(m = rhos V = rhos Ss h)
Вес (Р = g s m = gs rhos Ss h.)
Вес столба, давящего на дно сосуда, равен силе, и тогда:
(р = frac{Р}{S} = gs rhos Ss frac{h}{S} = gs rhos h.)
Применение на практике
Для гидравлических механизмов, например, прессов, можно рассчитать пропорциональный изменению площади выигрыш в силе, зная, во сколько раз увеличивается площадь большего поршня по сравнению с меньшим.
Соотношение между полезной и затраченной работой описывается понятием КПД, коэффициент полезного действия, и рассчитывается по формуле:
(frac{F_{2}h_{2}}{F_{1}h_{1}})
Также закон Паскаля описывает работу жидкостных манометров, приборов для измерения давления, отличного от атмосферного. Давление в одном колене манометра вызывает повышение жидкости в другом колене – это явление называется избыточным столбом. По его высоте, соотнося ее с нанесенной шкалой, пользователь прибора узнает точную цифру в миллиметрах ртутного столба.
Гидростатический парадокс
Согласно гидростатическому парадоксу, давление жидкости на любую плоскую стенку равняется весу столба этой жидкости, давящему на основание, площадь которого равна площади этой стенки. Поэтому от формы емкости давление не зависит. Если емкость расширяется к горлышку, то вес содержимого распределяется по наклонным стенкам и передается вниз через стенки, не давя на дно, а если емкость к горлышку сужается, то содержимое давит на стенки снизу вверх, что уменьшает его воздействие на дно.
Источник