Отношение давления к объему сосуда

Отношение давления к объему сосуда thumbnail

Упругие свойства сосудов. Пределы растяжимостисосудов зависят как от числа эластических и коллагеновых волокон, так и от соотношения между ними. Так, артерии какого-либо отдела большого круга кровообращения в 6-10 раз менее растяжимы, чем вены этого же отдела. В малом же круге кровообращения артерии всего в два раза менее растяжимы, чем вены, которые обладают почти такими же свойствами, как в большом круге.

Коэффициент объемной упругости Е’. Коэффициент объемной упругости Ё’ отражает упругие свойства полого образования (или изолированного отрезка сосуда). Этот коэффициент равен отношению прироста давления ( Р) к приросту объема ( V):

(15)

Если упругий материал легко растяжим, то его Е’ мал, и наоборот.

О податливости сосуда можно также судить по такой величине, как

(16)

Общая растяжимость системы из полых упругих элементов равна сумме растяжимостей этих элементов.

Соотношение между давлением и объемом как в отдельных сосудах или их частях, так и в кровеносной системе в целом можно представить в виде кривых давление-объем (см. рис. 20.12).

Модуль объемной упругости Котражает упругость, отнесенную к единице объема (т.е. прирост давления, необходимый для относительного изменения объема):

(17)

Модуль объемной упругости связан с плотностью крови ρ и скоростью распространения пульсовой волны с (в см/с) следующей зависимостью:

(18)

Эта зависимость дает возможность судить об упругих свойствах артерий при помощи относительно простого способа-измерения скорости распространения пульсовой волны.

ГЛАВА 20. ФУНКЦИИ СОСУДИСТОЙ СИСТЕМЫ 505

Сосудистый тонус.Во многих сосудах имеется некоторое количество гладкомышечных клеток, которые периодически спонтанно деполяризуются (см. разд. 4.5); эти клетки играют роль «пейсмекеров» и возбуждают соседние клетки (см. с. 85). Их сокращения не зависят от иннервации сосуда и наблюдаются даже после денервации сосудов. Благодаря этому явлению стенки сосудов даже в покое находятся в состоянии напряжения, или так называемого миогенного базального тонуса(см. рис. 20.25 и 20.26).

Напряжение большинства сосудов в покое обусловлено не только базальным тонусом, но также сокращением гладкомышечных клеток под влиянием сосудосуживающих импульсов, поступающих по вегетативным нервным волокнам. Это суммарное напряжение сосудов называется тонусом покоя(см. рис. 20.25).

Релаксация напряжения.Если внезапно увеличить объем изолированного участка сосуда, то давление в нем сначала резко повысится, а затем будет постепенно снижаться при том же объеме. Через несколько минут давление может стать лишь немногим больше, чем до увеличения объема (рис. 20.6). Это медленное снижение давления связано с тем, что после первоначального растяжения эластических волокон развивается как бы приспособление тонуса гладких мышц к увеличенному растяжению. Этот процесс называется релаксацией напряжения. Возможно, такое вязкоэластичноеповедение сосудистой стенки обусловлено перестройкой актомиозиновых мостиков в растянутых мышечных волокнах, в результате которой миофиламенты медленно скользят относительно друг друга, что и приводит к уменьшению напряжения.

Рис. 20.6. Кривая изменения давления при ступенчатом изменении объема в изолированном участке вены (по Гайтону [8] с изменениями)

При внезапном снижении объема в сосуде происходят обратные процессы (рис. 20.6). Напряжение в гладкомышечных волокнах сначала резко снижается, а в последующие минуты постепенно повышается; вместе с напряжением возрастает и внутрисосудистое давление. Это так называемая обратная релаксация напряжения.

Все эти явления гораздо более выражены ввенах, чем в артериях. Благодаря этому, а также вследствие большой емкости вены могут задерживать ивыбрасывать значительный объем крови без длительных изменений внутрисосудистого давления. Возможно, релаксация напряжения и обратная релаксация служат важными механизмами поддержания давления наполнения кровеносной системы (см. с. 508) в соответствии с различными физиологическими потребностями организма (см. с. 547).

Рекомендуемые страницы:

Источник

Кривые объем-давление артериальных и венозных сосудов. Релаксация сосудистой стенки

В настоящее время взаимосвязь между давлением и объемом в кровеносном сосуде или в каком-либо отделе сердечно-сосудистой системы выражается в виде так называемых кривых «объем-давление». Сплошными линиями красного и синего цвета на рисунке показаны кривые «объем-давление», характерные для артериальной и венозной систем, соответственно. На кривой красного цвета можно видеть, что при наполнении артериальной системы взрослого человека (включая крупные сосуды, мелкие артерии и артериолы) 700 мл крови среднее артериальное давление равно 100 мм рт. ст. Однако если наполнение уменьшится до 400 мл крови, давление падает до нуля.

В системе венозных сосудов в норме содержится от 2000 до 3500 мл крови. Потребуется дополнительно вместить несколько сотен миллилитров крови, чтобы изменить венозное давление только на 3-5 мм рт. ст. Этот факт объясняет, почему здоровому человеку можно ввести внутривенно 500 мл крови всего за несколько минут и без существенных изменений гемодинамики.

Кривые объем-давление артериальных и венозных сосудов
Кривые «объем-давление» артерий и вен большого круга кровообращения. Показано влияние стимуляции и торможения симпатических нервов на систему кровообращения

Усиление и ослабление симпатической стимуляции влияет на объем и давление крови как в артериальной, так и в венозной системе. На рисунке показано влияние симпатических нервов сердца на кривые «объем-давление». Совершенно очевидно, что увеличение тонуса гладких мышц сосудистой стенки, вызванное симпатической стимуляцией, приводит к увеличению давления при любом уровне наполнения артерий и вен. Уменьшение симпатической стимуляции, в свою очередь, вызывает снижение давления при любом уровне наполнения артерий и вен. Таким образом, контроль над тонусом сосудов с помощью симпатических нервов позволяет уменьшать объем одних сосудистых областей, перемещая кровь в другие сосудистые области. Так, например, увеличение тонуса сосудов большого круга кровообращения приводит к перемещению значительного объема крови к сердцу. Это является основным механизмом усиления сердечной деятельности.

Симпатический контроль над емкостью сосудистого русла особенно важен во время кровотечения. Увеличение симпатического тонуса и уменьшение просвета сосудов, особенно вен, позволяет сосудистой системе нормально функционировать даже в том случае, если кровопо-теря достигает 25% общего объема крови.

Медленно развивающаяся податливость сосудистой стенки (релаксация напряжения)

Термин «медленно развивающаяся податливость сосудистой стенки» означает, что первоначально в ответ на увеличение объема в кровеносном сосуде резко возрастает давление; но затем медленное, постепенное растяжение гладких мышц сосудистой стенки возвращает давление к нормальному уровню. Время, которое требуется для этого, исчисляется минутами и даже часами. На рисунке отражено изменение давления в небольшом отрезке вены, изолированном с двух концов. Дополнительный объем крови, быстро введенный в отрезок вены, вызвал повышение давления с 5 до 12 мм рт. ст. Несмотря на то, что кровь из вены не оттекала, давление сразу начало уменьшаться и через несколько минут понизилось до 9 мм рт. ст. Другими словами, введение дополнительного объема крови вызвало развитие упругого напряжения в стенке вены, но затем гладкомышечные волокна начали растягиваться до большей длины, и их напряжение начало уменьшаться. Этот эффект, характерный для гладкомышечной ткани, называют релаксацией напряжения.

Релаксация сосудистой стенки
Влияние на внутрисосудистое давление введения дополнительного объема крови в отрезок вены, а затем удаления избытка крови. Демонстрируется медленно развивающаяся податливость сосудистой стенки

Медленно развивающаяся податливость сосудистой стенки является важным механизмом, с помощью которого сосудистая система может вмещать большой дополнительный объем крови, когда это необходимо. Обратный процесс постепенного увеличения напряжения сосудистой стенки в ответ на внезапное уменьшение внутрисосудистого объема позволяет сосудистой системе в течение нескольких минут или часов автоматически приспосабливаться к уменьшению объема крови вследствие значительной кровопотери.

– Также рекомендуем “Пульсовые колебания артериального давления. Изменения пульсового давления”

Оглавление темы “Давление крови. Венозный кровоток”:

1. Гематокрит. Зависимость кровотока от давления

2. Растяжимость сосудов. Емкость сосудов

3. Кривые объем-давление артериальных и венозных сосудов. Релаксация сосудистой стенки

4. Пульсовые колебания артериального давления. Изменения пульсового давления

5. Пульсовая волна. Аускультативный метод измерения давления

6. Среднее артериальное давление. Вены и венозное давление

7. Сопротивление венозных сосудов. Влияние гравитации на венозное давление

8. Клапаны вен и венозный насос. Несостоятельность венозных клапанов

9. Методы измерения венозного давления. Емкостная функция вен

10. Депо эритроцитов – селезенка. Обновление крови

Источник

Оглавление темы “Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.”:

1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.

2. Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).

3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?

4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.

6. Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

7. Сердечный выброс. Минутный объем кровообращения. Сердечный индекс. Систолический объем крови. Резервный объем крови.

8. Частота сердечных сокращений ( пульс ). Работа сердца.

9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.

10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.

Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

Давление и скорость кровотока в системе кровообращения уменьшаются от аорты до венул (см. табл. 9.2), а кровеносные сосуды становятся все более мелкими и многочисленными. В капиллярах скорость кровотока замедляется наиболее выраженно, что благоприятствует отдаче кровью веществ тканям. Для венозного отдела характерны низкий уровень давления и более медленная по сравнению с артериальным руслом скорость кровотока.

Таблица 9.2. Гидродинамические характеристики сосудистого русла большого круга кровообращения
Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

Сопоставление величин давления, кровотока и сопротивления сосудов в различных отделах сосудистого русла (табл. 9.2) свидетельствует о том, что внутрисосудистое давление от аорты до полых вен резко снижается, а объем крови в венозном русле, наоборот, возрастает. Следовательно, артериальное русло характеризуется высоким давлением и сравнительно небольшим объемом крови, а венозное — большим объемом крови и низким давлением.

Считается, что в венозном русле содержится 75—80 % крови, а в артериальном — 15—17 % и в капиллярах — около 5 % (в диапазоне 3—10 %).

Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).
Рис. 9.1. Сердечно-сосудистая система (функциональная схема).

Цифры в скобках — величина кровотока в покое (в % к минутному объему), цифры внизу рисунка — содержание крови (в % к общему объему).

Артериальная часть сердечно-сосудистой системы (светлая часть схемы) содержит всего 15—20 % общего объема крови и характеризуется высоким (относительно остальных отделов системы) давлением. В центре схемы находится область транскапиллярного обмена, т. е. капиллярных (обменных) сосудов, для обеспечения оптимальной функции которых служит, в основном, сердечно-сосудистая система. При этом в виде точек обозначено большое число капилляров в организме и огромная площадь их возможной поверхности во время функционирования органа или ткани, хотя цифры внизу указывают на сравнительно небольшой объем содержащейся в них крови в условиях покоя. Наибольшее количество крови содержится в области большого объема, которая обозначена штриховкой. Эта область содержит в 3—4 раза больше крови, чем область высокого давления, в связи с чем и площадь, обозначенная на схеме штриховкой, больше площади светлой части схемы.

Исходя из этого в функциональной схеме сердечно-сосудистой системы (рис. 9.1) выделены 3 области: высокого давления, транскапиллярного обмена и большого объема.

При функциональном единстве, согласованности и взаимообусловленности подразделов сердечно-сосудистой системы и характеризующих их параметров в ней условно выделяют три уровня:

а) системная гемодинамика — обеспечивающая процессы циркуляции крови (кругооборота) в системе;

б) органное кровообращение — кровоснабжение органов и тканей в зависимости от их функциональной потребности;

в) микрогемодинамика (микроциркуляция) — обеспечение транскапиллярного обмена, т. е. нутритивной (питательной) функции сосудов.

– Также рекомендуем “Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.”

Источник

С. Т. Толчеев, технический директор ООО «Липецкпромэкспертиза»

Я. С. Толчеев, эксперт ООО «Липецкпромэкспертиза»

И.М. Стрекалов, эксперт ООО «ЭТС «Металлург-Л»

При эксплуатации сосудов различные виды давлений трактуются по разному. Одни считают, что расчетное давление равносильно разрешенному давлению. Другие считают, что разрешенное давление равносильно максимально возможному рабочему давлению. От правильной трактовки этих давлений зависит правильность настройки пружинных предохранительных клапанов, выбор пробного давления.

Согласно техническому регламенту Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (ТР ТС 032/2013)

«давление рабочее» – максимальное избыточное давление, возникающее при нормальном протекании рабочего процесса;

«давление разрешенное» – максимально допустимое избыточное давление для оборудования (элемента), установленное на основании оценки соответствия и (или) контрольного расчета на прочность;

«давление расчетное» – давление на которое производится расчет на прочность оборудования.

«давление пробное» – избыточное давление, при котором производится испытание оборудования на прочность и плотность.

Рассмотрим оборудование при пуске в работу и в процессе эксплуатации.

Разработчик и изготовитель оборудования и устройств безопасности прилагает к оборудованию паспорт и расчет на прочность оборудования, расчет пропускной способности предохранительных устройств. Определяет рабочее, расчетное и пробное давление сосуда.

В соответствии с п. 318 Федеральными нормами и правилами в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением» при работающих предохранительных клапанах в сосуде не допускается давление, превышающее:

а) разрешенное давление более чем на 0,05 МПа – для сосудов с давлением до 0,3МПа;

б) разрешенное давление более чем на 15 % – для сосудов с давлением от 0,3МПа до 6МПа;

в) разрешенное давление более чем на 10% – для сосудов с давлением свыше 6МПа.

В соответствии с пунктом 212 (б) Федеральными нормами и правилами в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением»  на оборудование вывешивается табличка на которую наносится разрешенное давление и другие сведения.

Кто должен определить разрешенное давление ?

Учитывая, что расположение клапанов на вертикальных сосудах, как правило, на верхних днищах или в местах наибольшего скопления паров и газов, то тогда разрешенное давление должно быть равно расчетному, так как рабочее давление не учитывает гидростатического давления среды и допустимого кратковременного повышения давления во время действия предохранительного клапана. Следовательно разрешенное давление должно быть больше рабочего давления (Рраз>Рраб).

А расчетное давление рассчитывается на давление равное 90% давления при полном открытии клапана. Разрешенное давление должно быть (Рраз=Ррас>Рраб).

Если это не учитывать, то настройка предохранительного клапана может быть неверна.

Если в процессе эксплуатации снижено рабочее давление сосуда, то необходимо провести расчет пропускной способности предохранительных устройств для новых условий работы.

Для большинства типов оборудования, работающего под давлением значение пробного давления Рпр
при испытаниях определяют по формулам [1-6] Федеральные нормы и правила в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением»:

Рпр=К×Р×[σ]20/×[σ]t,

Коэффициент К, зависящий от типа оборудования и вида испытания.

Р – расчетное, рабочее или разрешенное давление оборудования.

В соответствии с п. 172 Федеральные нормы и правила в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением» значение пробного давления определяется от рабочего давления, а согласно п. 392 ФНП определяют величину пробного давления исходя из величины разрешенного давления.

Определение пробного давления зависит от того, на каком этапе происходит испытание. После изготовления и доизготовления на месте эксплуатации за Р принимается расчетное давление. Если испытание оборудования производится в период его использования в сроки, установленные изготовителем, за Р принимается рабочее давление. Если испытание осуществляется по истечении срока службы величина Р принимается равной разрешенному давлению, установленному экспертной организацией.

Если в процессе эксплуатации снижено рабочее давление сосуда и необходимо провести гидравлическое испытание, то необходимо определить пробное давление по установленному разрешенному давлению.

Мы знаем, что рабочее давление не учитывает гидростатического давления среды. Тогда

разрешенное давление должно определяться как расчетное давление в условиях испытаний. Это давление которому элементы сосуда подвергаются во время пробного испытания, включая гидростатическое давление, если оно составляет 5% или более пробного давления.

При определении разрешенного давления это обстоятельство многие не учитывают в своих расчетах.

Список литературы

  1. Федеральные нормы и правила в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов на которых используется оборудование работающее под избыточным давлением», утвержденными приказом Ростехнадзора от 25.03.2014 № 116.
  2. (ТР ТС 032/2013) Технический регламент Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (принят решением Совета Евразийской экономической комиссии от 02.07.2013 № 41).
  3. ПБ 03-584-03 Правила проектирования, изготовления и приемки сосудов и аппаратов стальных сварных. Утверждены постановлением Госгортехнадзора России от 10.06.2003 № 81.
  4. РД 03-421-01. Методические указания по проведению диагностирования технического состояния и определению остаточного срока службы сосудов и аппаратов.
  5. ГОСТ 14249-89. Сосуды и аппараты. Нормы и методы расчета на прочность.

Источник

Читайте также:  Сферические днища сосудов под давлением