Периферических сосудов сопротивление изменение

Периферических сосудов сопротивление изменение thumbnail

1.

Из формулы Пуазейля следует, что сопротивление будет тем больше, чем больше вязкость жидкости, чем длиннее трубка и чем уже её диаметр.

Формула Пуазейля

Где η– коэффициент вязкости, l – длина трубки и r – радиус.

Наибольшим сопротивлениемиз всех сосудов обладают артериолы. Они имеют просвет почти такой же узкий как капилляры, но значительно длиннее их, и скорость течения крови в них значительно выше. При прочих равных условиях сопротивление будет тем больше, чем больше скорость тока крови в сосудах, т.к. при этом возрастает внутреннее трение. Если на продвижение крови в крупных и средних артериях расходуется 10% энергии сердца, то 85% расходуется на продвижение крови в артериолах и капиллярах. Артериолы обладают толстой мышечной стенкой, с помощью которой меняется их просвет, и они являются главным регулятором уровня общего артериального давления. Сеченов И.М. называл артериолы кранами сердечно-сосудистой системы. Открытие этих кранов увеличивает приток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны. Итак, артериолы играют двоякую роль в кровообращении: 1) участвуют в поддержании необходимого уровня общего артериального давления, создавая основное сопротивление движению крови, 2) участвуют в регуляции величины местного кровотока через тот или иной орган, изменяя свой диаметр.

В артериальной части сопротивление медленно возрастает. На отрезке от мелких артерий до капилляров оно резко увеличивается за счет уменьшения диаметра артериол. В капиллярной части оно возрастает более медленно и совсем медленно в венах.

Вопрос №4:Нарисуйте дугу прессорецептивного рефлекса. Как изменится общее артериальное давление при раздражении центрального конца депрессорного нерва? Особенности регуляции АД у новорожденных и детей раннего возраста.

Прессорецептивным (барорецептивным) рефлексом – этонервнорефлекторный механизм регулирующий величину минутного объёма сердца (Q) и периферического сосудистого сопротивления (R).

Его информационная часть которого представлена собственными сосудистыми барорецепторами, расположенными в дуге аорты и в каротидном синусе.

Рецепторы реагируют на степень растяжения стенки сосуда пульсовыми или нарастающими колебаниями кровяного давления. В ответ на каждый систолический скачок давления барорецепторы генерируют залп импульсов, который затухает при диастолическом снижении давления. Чем вышедавление крови в этих сосудах, тем сильнее раздражаются барорецепторы, и частота импульсов, посылаемых в сосудодвигательный центр, возрастает, и наоборот.

При раздражении центрального конца депрессорного нерва АД возрастает.

Особенности регуляции артериального давления

У детей разного возраста.

Рефлекторные механизмы регуляции уровня артериального давления осуществляются путем изменения работы сердца и величины периферического сопротивления. Основными рефлексогенными зонами, в которых локализованы баро- и хеморецепторы являются разветвления сонной артерии и дуга аорты. У взрослых раздражение прессорецепторов этих зон приводит к снижению артериального давления (депрессорный эффект) за счет усиления тонического влияния блуждающего нерва на сердце и снижения прессорного воздействия сосудосуживающего центра на сосуды.

У новорожденных животных (обезьяны) уже функционируют прессорецепторы синокаротидной зоны. Частота импульсов от них зависит от величины артериального давления, но раздражение нервов, идущих от рецепторов вызывает слабовыраженное снижение ситемного артериального давления. Депрессорный эффект с аортальной рефлексогенной зоны отсутствует. Он появляется позже, к 3-4 месяцам, одновременно с формированием тонической активности блуждающего нерва на сердце.

Нестабильны эффекты с хеморецепторов каротидного тельца на гиперкапнию и гипоксию: они не постоянны, либо очень слабые. Только к концу первого года жизни при раздражении хеморецепторов появляется хорошо выраженное повышение артериального давления. Начинают работать регуляторные механизмы перераспределения кровотока при переходе от покоя к двигательной активности.

Сосудодвигательные реакции на гуморальные раздражители появляются раньше, чем на нервные. Так, еще в периоде внутриутробного развития адреналин суживает прекапиллярные сфинктеры.

У новорожденных и детей раннего возраста во много раз выше активность ренин-ангиотензинной системы, чем у взрослых. Полагают, что эта система играет у них немаловажную роль в повышении сосудистого тонуса.

№5 Задача: Задача. Длительность интервала РQ на ЭКГ взрослого человека составляет 0,24 сек. Могут ли при этом произойти изменения в работе сердца?

Сегмент PQ отражает проведение возбуждения через атриовентрикулярный узел. Продолжительность соответствующего интервала в норме – 0,12-0,20 сек. Длительность данного интервала, равная 0,24с, говорит о том, что возбуждение идет медленнее, чем в норме(почти в 2 раза). В результате этого и само сердце будет сокращаться медленнее и, возможно, сокращение предсердий и желудочков не будет столь согласованным, как при нормальной работе сердца.

Билет 4



Источник

Сопротивляемость сосудов. Проводимость сосудов

Сопротивление представляет собой препятствие кровотоку, которое возникает в кровеносных сосудах. Сопротивление не может быть измерено никаким прямым методом. Оно может быть рассчитано с использованием данных о величине кровотока и разницы давления на обоих концах кровеносного сосуда. Если разница давления равна 1 мм рт. ст., а объемный кровоток равен 1 мл/сек, сопротивление составляет 1 единицу периферического сопротивления (ЕПС).

Читайте также:  Настойка прополиса при очищении сосудов

Сопротивление, выраженное в единицах системы СГС. Иногда для выражения единиц периферического сопротивления используют единицы системы СГС (сантиметры, граммы, секунды). В этом случае единицей сопротивления будет дина сек/см5.

Общее периферическое сосудистое сопротивление и общее легочное сосудистое сопротивление. Объемная скорость кровотока в системе кровообращения соответствует сердечному выбросу, т.е. тому объему крови, которое сердце перекачивает за единицу времени. У взрослого человека это составляет примерно 100 мл/сек. Разница давления между системными артериями и системными венами равна примерно 100 мм рт. ст. Следовательно, сопротивление всего системного (большого) круга кровообращения или, иными словами, общее периферическое сопротивление соответствует 100/100 или 1 ЕПС.

В условиях, когда все кровеносные сосуды организма резко сужены, общее периферическое сопротивление может возрасти до 4 ЕПС. И наоборот, если все сосуды окажутся расширенными, сопротивление может упасть до 0,2 ЕПС.

сопротивляемость сосудов

В сосудистой системе легких артериальное давление в среднем равно 16 мм рт. ст., а среднее давление в левом предсердии — 2 мм рт. ст. Следовательно, общее легочное сосудистое сопротивление составит 0,14 ЕПС (примерно 1/7 общего периферического сопротивления) при обычном сердечном выбросе, равном 100 мл/сек.

Проводимость сосудистой системы для крови и ее взаимосвязь с сопротивлением. Проводимость определяется объемом крови, протекающим по сосудам, за счет данной разницы давления. Проводимость выражается в миллилитрах за секунду на миллиметр ртутного столба, но может быть выражена также в литрах за секунду на миллиметр ртутного столба или в каких-либо других единицах объемного кровотока и давления.

Очевидно, что проводимость — это величина, обратная сопротивлению: проводимость=1/сопротивление.

Незначительные изменения диаметра сосудов могут привести к существенным изменениям их проводимоаи. В условиях ламинарного течения крови незначительные изменения диаметра сосудов могут резко изменить величину объемного кровотока (или проводимость кровеносных сосудов). На рисунке показаны три сосуда, диаметры которых соотносятся как 1, 2 и 4, а разница давления между концами каждого сосуда одинакова — 100 мм рт. ст. Скорость объемного кровотока в сосудах равна 1, 16 и 256 мл/мин, соответственно.

Обратите внимание, что при увеличении диаметра сосуда только в 4 раза объемный кровоток увеличился в нем в 256 раз. Таким образом, проводимость сосуда увеличивается пропорционально четвертой степени диаметра в соответствии с формулой: Проводимость ~ Диаметр.

– Также рекомендуем “Закон Пуазейля. Диаметр артериол и их сопротивление”

Оглавление темы “Сосудистая система”:

1. Электрокардиограмма при фибрилляции желудочков. Электрошоковая дефибрилляция желудочков

2. Ручной массаж сердца в помощь дефибрилляции. Фибрилляция предсердий

3. Трепетание предсердий. Остановка сердца

4. Функциональные участки системы кровообращения. Объемы крови в различных отделах сосудистой системы

5. Давление крови в различных участках сосудистой системы. Теоретические основы кровообращения

6. Регуляция объема кровотока и периферического сопротивления. Объемный кровоток

7. Ультразвуковой флоуметр. Ламинарное течение крови в сосудах

8. Турбулентное течение крови. Давление крови

9. Сопротивляемость сосудов. Проводимость сосудов

10. Закон Пуазейля. Диаметр артериол и их сопротивление

Источник

Оглавление темы “Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.”:

1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.

2. Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).

3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?

4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.

6. Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

7. Сердечный выброс. Минутный объем кровообращения. Сердечный индекс. Систолический объем крови. Резервный объем крови.

8. Частота сердечных сокращений ( пульс ). Работа сердца.

9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.

10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.

Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:

Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:

Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк, используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

где Р1—Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332— коэффициент перевода единиц сопротивления в систему CGS.

Читайте также:  Сосуд под напитки 6 букв

Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.

Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.
Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.

В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин • с ¦ см , при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200—3000 дин • с • см-5.

Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.

– Также рекомендуем “Сердечный выброс. Минутный объем кровообращения. Сердечный индекс. Систолический объем крови. Резервный объем крови.”

Источник

Физиологическая роль артериол в регуляции кровотока

В масштабе организма, от тонуса артериол зависит общее периферическое сопротивление, которое, наряду с ударным объёмом сердца определяет величину артериального давления.

Кроме того, тонус артериол может изменяться локально, в пределах данного органа или ткани. Локальное изменение тонуса артериол, не оказывая заметного влияния на общее периферическое сопротивление, будет определять величину кровотока в данном органе. Так, тонус артериол заметно снижается в работающих мышцах, что приводит к увеличению их кровоснабжения.

Регуляция тонуса артериол

Поскольку изменение тонуса артериол в масштабе целостного организма и в масштабе отдельных тканей имеет совершенно различное физиологическое значение, существуют как локальные, так и центральные механизмы его регуляции.

Локальная регуляция сосудистого тонуса

В отсутствие всяких регуляторных воздействий изолированная артериола, лишенная эндотелия, сохраняет некоторый тонус, зависящий от самих гладких мышц. Он называется базальным тонусом сосуда. На него могут оказывать влияние такие факторы среды, как pH и концентрация CO2 (снижение первой и повышение второй приводят к уменьшению тонуса). Эта реакция оказывается физиологически целесообразной, так как следующее за локальным снижением тонуса артериол увеличение местного кровотока, собственно, и приведет к восстановлению тканевого гомеостаза.

Далее, эндотелий сосудов постоянно синтезирует как сосудосуживающие (прессорные) (эндотелин), так и сосудорасширяющие (депрессорные) факторы (оксид азота NO и простациклин).

При повреждении сосуда тромбоциты выделяют мощный сосудосуживающий фактор тромбоксан A2, что приводит к спазму поврежденного сосуда и временной остановке кровотечения.

Напротив, медиаторы воспаления, такие, как простагландин E2 и гистамин вызывают снижение тонуса артериол. Изменение метаболического состояния ткани может менять баланс прессорных и депрессорных факторов. Так, снижение pH и увеличение концентрации CO2 смещает баланс в пользу депрессорных влияний.

Системные гормоны, регулирующие сосудистый тонус

Гормон нейрогипофиза вазопрессин, как явствует из его названия (лат. vas — сосуд, pressio — давление) оказывает некоторое, хотя и скромное, сосудосуживающее действие. Гораздо более мощным прессорным гормоном является ангиотензин (греч. ангио — сосуд, тензио — давление) — полипептид, который формируется в плазме крови при снижении давления в артериях почек. Весьма интересным действием на сосуды обладает гормон мозгового вещества надпочечников адреналин, который продуцируется при стрессе и метаболически обеспечивает реакцию «борьбы или бегства». В гладких мышцах артериол большинства органов имеются α-адренорецепторы, вызывающие сужение сосудов, однако в артериолах скелетных мышц и головного мозга преобладают β2-адренорецепторы, которые вызывают снижение сосудистого тонуса. В результате, во-первых, возрастает общее сосудистое сопротивление и, следовательно, артериальное давление, а во-вторых, сопротивление сосудов скелетных мышц и мозга снижается, что приводит к перераспределению кровотока в эти органы и резкое увеличение их кровоснабжения.

Сосудосуживающие и сосудорасширяющие нервы

Все, или почти все, артериолы организма получают симпатическую иннервацию. Симпатические нервы в качестве нейромедиатора имеют катехоламины (в большинстве случаев норадреналин) и имеют сосудосуживающее действие. Поскольку аффинность β-адренорецепторов к норадреналину мала, то даже в скелетных мышцах при действии симпатических нервов преобладает прессорный эффект.

Читайте также:  Давление жидкости на дно сосуда факты

Парасимпатические сосудорасширяющие нервы, нейромедиаторами которых являются ацетилхолин и оксид азота, встречаются в организме человека в двух местах: слюнных железах и пещеристых телах. В слюнных железах их действие приводит к увеличению кровотока и усилению фильтрации жидкости из сосудов в интерстиций и далее к обильной секреции слюны, в пещеристых телах снижение тонуса артериол под действием сосудорасширяющих нервов обеспечивает эрекцию.

Участие артериол в патофизиологических процессах

Воспаление и аллергические реакции

Важнейшая функция воспалительной реакции — локализация и лизис чужеродного агента, вызвавшего воспаление. Функции лизиса выполняют клетки, доставляющиеся в очаг воспаления током крови (главным образом, нейтрофилы и лимфоциты. Соответственно, оказывается целесообразным увеличить в очаге воспаления локальный кровоток. Поэтому «медиаторами воспаления» служат вещества, имеющие мощный сосудорасширяющий эффект — гистамин и простагландин E2. Три из пяти классических симптомов воспаления (покраснение, отёк, жар) вызваны именно расширением сосудов. Увеличение притока крови — следовательно, краснота; рост давления в капиллярах и увеличение фильтрации из них жидкости — следовательно, отёк (впрочем, в его формировании участвует и рост проницаемости стенок капилляров), увеличение притока нагретой крови от ядра тела — следовательно, жар (хотя здесь, возможно, не меньшую роль играет увеличение скорости обмена веществ в очаге воспаления).

Однако, гистамин, кроме защитной воспалительной реакции, является главным медиатором аллергий.

Это вещество секретируется тучными клетками, когда сорбированные на их мембранах антитела связываются с антигенами из группы иммуноглобулинов E.

Аллергия на какое-то вещество возникает, когда против него нарабатывается достаточно много таких антител и они массово сорбируются на тучные клетки в масштабах организма. Тогда, при контакте вещества (аллергена) с этими клетками, они секретируют гистамин, что вызывает по месту секреции расширение артериол, с последующими болью, покраснением и отеком. Таким образом, все варианты аллергии, от насморка и крапивницы, до отёка Квинке и анафилактического шока, в значительной мере оказываются связаны с гистамин-зависимым падением тонуса артериол. Разница состоит в том, где и насколько массивно происходит это расширение.

Особенно интересным (и опасным) вариантом аллергии является анафилактический шок. Он возникает, когда аллерген, обычно после внутривенной или внутримышечной инъекции, распространяется по всему телу и вызывает секрецию гистамина и расширение сосудов в масштабах организма. В этом случае максимально наполняются кровью все капилляры, но их общая ёмкость превышает объём циркулирующей крови. В результате, кровь не возвращается из капилляров в вены и предсердия, эффективная работа сердца оказывается невозможной и давление падает до нуля. Реакция эта развивается в течение нескольких минут и ведёт к гибели больного. Наиболее эффективное мероприятие при анафилактическом шоке — внутривенное введение вещества, обладающего мощным сосудосуживающим действием — лучше всего норадреналина.

Артериальная гипертензия

Wikimedia Foundation.
2010.

Смотреть что такое “Общее периферическое сосудистое сопротивление” в других словарях:

  • Список медицинских сокращений — Эта страница глоссарий. # А …   Википедия

  • Кровообращение — I Кровообращение (circulatio sanguinis) непрерывное движение крови по замкнутой системе полостей сердца и кровеносных сосудов, обеспечивающее все жизненно важные функции организма. Направленный ток крови обусловлен градиентом давления, который… …   Медицинская энциклопедия

  • Карветренд — Действующее вещество ›› Карведилол* (Carvedilol*) Латинское название Carvetrend АТХ: ›› C07AG02 Карведилол Фармакологическая группа: Альфа и бета адреноблокаторы Нозологическая классификация (МКБ 10) ›› I10 I15 Болезни, характеризующиеся… …   Словарь медицинских препаратов

  • Ста́рость. Старе́ние — Старость, старение. Старость закономерно наступающий период возрастного развития, заключительный этап онтогенеза. Старение неизбежный биологический разрушительный процесс, приводящий к постепенному снижению адаптационных возможностей организма;… …   Медицинская энциклопедия

  • Периндоприл — (Perindopril) Химическое соединение …   Википедия

  • Механокардиография — I Механокардиография (греч. mēchanikos механический + kardia сердце + graphō писать, изображать) косвенный метод исследования основных параметров центральной гемодинамики, основанный на регистрации и анализе некоторых показателей, связанных с… …   Медицинская энциклопедия

  • Подростковый возраст — (синонимы: пубертатный возраст, старший школьный возраст) период жизни, продолжающийся в среднем от 10 12 до 15 16 лет у девочек и от 12 14 до 17 18 лет у мальчиков. Условно началом П.в. считают время появления оволосения на лобке. Во время П.в.… …   Медицинская энциклопедия

  • Бипрол — Действующее вещество ›› Бисопролол* (Bisoprolol*) Латинское название Biprol АТХ: ›› C07AB07 Бисопролол Фармакологическая группа: Бета адреноблокаторы Нозологическая классификация (МКБ 10) ›› I10 I15 Болезни, характеризующиеся повышенным кровяным… …   Словарь медицинских препаратов

  • Листрил — Действующее вещество ›› Лизиноприл* (Lisinopril*) Латинское название Listril АТХ: ›› C09AA03 Лизиноприл Фармакологическая группа: Ингибиторы АПФ Нозологическая классификация (МКБ 10) ›› I10 I15 Болезни, характеризующиеся повышенным кровяным… …   Словарь медицинских препаратов

  • Буторфанол — (Butorphanol) Химическое соединение …   Википедия

Источник