Площадь сосуда через диаметр

Площадь сосуда через диаметр thumbnail

1. Расчет объема куба

a – сторона куба

Формула объема куба, (V):

2. Найти по формуле, объем прямоугольного параллелепипеда

a, b, c – стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

3. Формула для вычисления объема шара, сферы

R – радиус шара

π ≈ 3.14

По формуле, если дан радиус, можно найти объема шара, (V):

4. Как вычислить объем цилиндра ?

h – высота цилиндра

r – радиус основания

π ≈ 3.14

По формуле найти объема цилиндра, есди известны – его радиус основания и высота, (V):

5. Как найти объем конуса ?

R – радиус основания

H – высота конуса

π ≈ 3.14

Формула объема конуса, если известны радиус и высота (V):

7. Формула объема усеченного конуса

r – радиус верхнего основания

R – радиус нижнего основания

h – высота конуса

π ≈ 3.14

Формула объема усеченного конуса, если известны – радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр – пирамида у которой все грани, равносторонние треугольники.

а – ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a – сторона основания

h – высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a – сторона основания

h – высота пирамиды

Формула объема правильной треугольной пирамиды, если даны – высота и сторона основания (V):

Читайте также:  Лазер прибор для сосудов

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h – высота пирамиды

a – сторона основания пирамиды

n – количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Объем правильной пирамиды

12. Расчет объема пирамиды

h – высота пирамиды

S – площадь основания ABCDE

Формула для вычисления объема пирамиды, если даны – высота и площадь основания (V):

13. Расчёт объёма усечённой пирамиды

h – высота пирамиды

Sниж – площадь нижнего основания, ABCDE

Sверх – площадь верхнего основания, abcde

Формула объема усеченной пирамиды, (V):

14. Объем шарового сегмента, формула

Шаровый сегмент- это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.

R – радиус шара

h – высота сегмента

π ≈ 3.14

Формула для расчета объема шарового сегмента, (V):

15. Объем шарового сектора

R – радиус шара

h – высота сегмента

π ≈ 3.14

Формула объема шарового сектора, (V):

16. Объем шарового слоя

h – высота шарового слоя

R – радиус нижнего основания

r – радиус верхнего основания

π ≈ 3.14

Формула объема шарового слоя, (V):

Источник