Плотность газа в закрытом сосуде

Плотность газа в закрытом сосуде thumbnail

5.4. Практическое применение уравнения состояния идеального газа

5.4.2. Уравнение состояния для газа в закрытом сосуде

При рассмотрении идеального газа, находящегося в закрытом сосуде (баллоне), необходимо учитывать, что изменение термодинамических параметров происходит при постоянной массе газа.

Для идеального газа, находящегося в закрытом сосуде, необходимо учитывать следующее:

  • масса газа, находящегося в закрытом сосуде, вследствие изменения его термодинамических параметров не изменяется:

m = const;

  • объем газа, заполняющего сосуд определенного объема, также фиксирован: V = const;
  • постоянными также остаются следующие параметры газа:

ρ = const; ν = const; n = const;

где ρ – плотность газа; ν – количество вещества (газа); n – концентрация молекул (атомов) газа.

Для идеального газа, находящегося в закрытом сосуде и изменяющего свое состояние, уравнение Менделеева – Клапейрона записывается в виде системы (рис. 5.8):Рис. 5.8

p 1 V = ν R T 1 , p 2 V = ν R T 2 , }

где p 1, T 1 – давление и температура газа в начальном состоянии; p 2, T 2 – давление и температура газа в конечном состоянии; V – объем баллона; ν – количество газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Термин избыточное давление, встречающийся в задачах об идеальном газе в закрытом сосуде (баллоне), означает абсолютную разность между давлением газа, находящегося в сосуде, и давлением на стенки сосуда снаружи:

p изб = |p − p 0|,

где p – давление газа, находящегося внутри сосуда; p 0 – давление (атмосферное либо гидростатическое) на стенки сосуда снаружи.

Пример 13. Баллон рассчитан на максимальное избыточное давление 150 МПа. В него накачали газ при температуре 300 К до давления 120 МПа. Постепенно нагревая газ, баллон погружают в воду плотностью 1000 кг/м3 на глубину 1000 м. До какой максимальной температуры можно нагреть газ в баллоне, чтобы он не взорвался?

Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в баллоне:

  • в начале нагревания

p 1V = νRT 1;

  • в конце нагревания

p 2V = νRT 2;

где p 1 – первоначальное давление газа в баллоне; p 2 – давление газа в баллоне в конце нагревания; V – объем газа (баллона), V = const; ν – количество вещества (газа) в баллоне; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в начале процесса; T 2 – температура газа в конце процесса.

Отношение уравнений

p 1 V p 2 V = ν R T 1 ν R T 2

позволяет определить давление газа в конце процесса:

p 2 = p 1 T 2 T 1 .

В условии задачи задано максимальное избыточное давление, определяемое формулой

p изб max = | p 2 − p 0 | ,

где p 0 – давление снаружи баллона; p 2 – давление газа внутри баллона.

При погружении баллона в воду с одновременным нагреванием указанные давления снаружи и внутри баллона определяются следующими формулами:

  • снаружи (сумма атмосферного и гидростатического давлений) –

p 0 = p атм + p гидр = p атм + ρ0gh,

где p атм – атмосферное давление; p гидр – гидростатическое давление, p гидр = ρ0gh; ρ0 – плотность воды; g – модуль ускорения свободного падения; h – глубина погружения баллона;

  • внутри (давление газа) –

p 2 = p 1 T 2 T 1 ,

где T 2 – максимальная температура газа (искомая величина).

Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает

p изб max = | p 1 T 2 T 1 − ρ 0 g h − p атм | ≈ | p 1 T 2 T 1 − ρ 0 g h | ,

так как p атм << ρ0gh, p атм << p 2.

Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:

p изб max = p 1 T 2 T 1 − ρ 0 g h , p изб max = ρ 0 g h − p 1 T 2 T 1 ,

из которых следуют две формулы для расчета искомой величины:

T 2 = T 1 ⋅ ρ 0 g h + p изб max p 1 , T 2 = T 1 ⋅ ρ 0 g h − p изб max p 1 .

Максимальному значению искомой температуры соответствует значение, рассчитанное по первой формуле:

T 2 = 300 ⋅ 1000 ⋅ 10 ⋅ 1000 + 150 ⋅ 10 6 120 ⋅ 10 6 = 400 К.

Чтобы баллон не взорвался, его можно погрузить на заданную глубину, одновременно нагревая до температуры 400 К.

Пример 14. Бутылка емкостью 0,75 л выдерживает максимальное избыточное давление 150 кПа. Из бутылки откачивают воздух и запечатывают некоторое количество твердого углекислого газа с молярной массой 44,0 г/моль. Атмосферное давление равно 100 кПа. Считая, что объем твердого углекислого газа пренебрежимо мал по сравнению с объемом бутылки, найти его максимальную массу, которая не вызовет взрыва бутылки при температуре 300 К?

Решение. Запишем уравнение Менделеева – Клапейрона для углекислого газа, находящегося в бутылке, после его превращения в газообразное состояние:

p V = m M R T ,

где p – давление углекислого газа в бутылке; V – объем газа (бутылки); m – масса углекислого газа в бутылке; M – молярная масса углекислого газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа.

Записанное уравнение позволяет получить выражение для расчета давления газа внутри бутылки:

p = m R T V M .

В условии задачи задано максимальное избыточное давление, определяемое формулой

p изб max = | p − p 0 | ,

где p 0 – давление снаружи бутылки.

Указанные давления снаружи и внутри бутылки определяются следующим образом:

  • снаружи (атмосферное давление) – p 0;
  • внутри (давление углекислого газа) –
Читайте также:  Лекарство для сосудов капельница

p = m R T V M ,

где m соответствует искомой величине – максимальной массе углекислого газа.

Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает

p изб max = | m R T V M − p 0 | .

Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:

p изб max = m R T V M − p 0 , p изб max = p 0 − m R T V M ,

из которых следуют две формулы для расчета искомой величины:

m = V M ( p 0 + p изб max ) R T , m = V M ( p 0 − p изб max ) R T .

Максимальному значению искомой массы соответствует значение, рассчитанное по первой формуле:

m = 0,75 ⋅ 10 − 3 ⋅ 44,0 ⋅ 10 − 3 ( 100 + 150 ) ⋅ 10 3 8,31 ⋅ 300 = 3,3 ⋅ 10 − 3 кг = 3,3 г .

Чтобы бутылка не взорвалась, в нее можно запечатать не более 3,3 г твердого углекислого газа.

Пример 15. В наличии имеется неограниченное количество баллонов объемом по 4,0 л, заполненных некоторым идеальным газом до давления 500 кПа. Баллоны предназначены для наполнения газом оболочки аэрозонда и их можно соединять между собой. Сколько баллонов с газом необходимо одновременно подсоединить к пустой оболочке аэрозонда объемом 800 дм3, чтобы наполнить ее до давления 100 кПа, равного атмосферному? Температура газа при заполнении оболочки не изменяется.

Решение. Для осуществления процесса, описанного в условии задачи, требуется определенное количество газа ν.

Необходимое количество газа заполняет следующий объем:

  • в начале процесса (до заполнения оболочки)

V 1 = NV бал,

где N – количество баллонов; V бал – объем одного баллона, V бал = 4,0 л;

  • в конце процесса (после заполнения оболочки)

V 2 = NV бал + V обол,

где V обол – объем оболочки, V обол = 800 дм3.

Указанное количество газа находится при давлении:

  • в начале процесса (до заполнения оболочки) –

p 1 = 500 кПа

и совпадает с давлением газа в каждом из баллонов;

  • в конце процесса (после заполнения оболочки) –

p 2 = 100 кПа

и совпадает с давлением в оболочке.

Считая процесс заполнения газом оболочки аэрозонда изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:

  • в начале процесса (до заполнения оболочки) –

p 1V 1 = νRT,

где ν – количество вещества (газа) в оболочке; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • в конце процесса (после заполнения оболочки) –

p 2V 2 = νRT.

Равенство

p 1V 1 = p 2V 2,

записанное в явном виде

p 1NV бал = p 2(NV бал + V обол),

позволяет получить формулу для вычисления искомого числа баллонов:

N = V обол V бал ⋅ p 2 p 1 − p 2 .

Произведем расчет:

N = 800 ⋅ 10 − 3 4,0 ⋅ 10 − 3 ⋅ 100 ⋅ 10 3 ( 500 − 100 ) ⋅ 10 3 = 50 .

Следовательно, для заполнения оболочки до указанного давления необходимо 50 баллонов с газом.

Пример 16. Аэростат, оболочка которого заполнена азотом с молярной массой 28 г/моль, находится в воздухе. Молярная масса воздуха равна 29 г/моль. Массы гондолы и оболочки аэростата пренебрежимо малы. Во сколько раз возрастет подъемная сила аэростата, если азот в его оболочке заменить на водород с молярной массой 2,0 г/моль, не изменяя при этом объем аэростата?

Решение. Силы (сила тяжести m g → и сила Архимеда F → A ), действующие на аэростат, показаны на рисунке.

Подъемная сила – это векторная сумма силы тяжести и силы Архимеда:

F → под = F → A + m g → ,

где F → A – сила Архимеда, действующая на оболочку со стороны воздуха; m g → – сила тяжести; m – масса газа, заполняющего оболочку аэростата; g → – ускорение свободного падения.

В проекциях на вертикальную ось подъемная сила определяется следующими выражениями:

  • при заполнении оболочки азотом –

F под1 = F A1 − m 1g,

где F A1 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки азотом, F A1 = ρ0gV 1; ρ0 – плотность воздуха; V 1 – объем оболочки аэростата при заполнении ее азотом (объем воздуха, вытесненного оболочкой); m 1 – масса азота, заполняющего оболочку, m 1 = ρ1V 1; ρ1 – плотность азота;

  • при заполнении оболочки водородом –

F под2 = F A2 − m 2g,

где F A2 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки водородом, F A2 = ρ0gV 2; V 2 – объем оболочки аэростата при заполнении ее водородом (объем воздуха, вытесненного оболочкой); m 2 – масса водорода, заполняющего оболочку, m 2 = ρ2V 2; ρ2 – плотность водорода.

Искомой величиной является отношение

F под 2 F под 1 = F A 2 − m 2 g F A 1 − m 1 g .

С учетом записанных выражений для сил Архимеда, масс азота и водорода, а также равенства объемов оболочки при заполнении ее азотом и водородом (V 1 = V 2), указанное отношение принимает вид

F под 2 F под 1 = ρ 0 g V 2 − ρ 2 V 2 g ρ 0 g V 1 − ρ 1 V 1 g = ( ρ 0 − ρ 2 ) V 2 g ( ρ 0 − ρ 1 ) V 1 g = ρ 0 − ρ 2 ρ 0 − ρ 1 .

Плотности воздуха, азота и водорода определим как отношения:

  • для воздуха

ρ 0 = M 0 V μ 0 ,

где M 0 – молярная масса воздуха; V µ0 – молярный объем воздуха;

  • для азота

ρ 1 = M 1 V μ 1 ,

где M 1 – молярная масса азота; V µ1 – молярный объем азота;

  • для водорода
Читайте также:  Ребенок 2 года лопнул сосуд в глазу что делать

ρ 2 = M 2 V μ 2 ,

где M 2 – молярная масса водорода; V µ2 – молярный объем водорода.

Молярные объемы (объемы одного моля) воздуха, азота и водорода равны между собой, так как газы находятся при одних и тех же условиях:

V µ0 = V µ1 = V µ2 = V µ.

Поэтому формула для расчета искомого отношения приобретает вид

F под 2 F под 1 = ρ 0 − ρ 2 ρ 0 − ρ 1 = M 0 − M 2 M 0 − M 1 .

Расчет дает значение:

F под 2 F под 1 = 29 ⋅ 10 − 3 − 2,0 ⋅ 10 − 3 29 ⋅ 10 − 3 − 28 ⋅ 10 − 3 = 27 .

При замене азота на водород в оболочке аэростата его подъемная сила возрастет в 27 раз.

Пример 17. Воздушный шар с температурой 300 К находится в воздухе при атмосферном давлении 100 кПа. Молярная масса воздуха составляет 29,0 г/моль. Объем воздушного шара равен 830 дм3, а масса его оболочки равна 333 г. На сколько градусов необходимо нагреть газ в оболочке, чтобы шар взлетел? Воздух в оболочке шара сообщается с атмосферой.

Решение. Силы, действующие на воздушный шар, показаны на рисунке:

  • сила Архимеда

F A = ρ0gV,

где ρ0 – плотность воздуха, окружающего шар; g – модуль ускорения свободного падения; V – объем оболочки шара (объем вытесненного оболочкой воздуха);

  • сила тяжести

mg = (m обол + m возд)g,

где m обол – масса оболочки; m возд – масса воздуха в оболочке, m возд = ρV; ρ – плотность воздуха внутри оболочки.

Шар взлетает, когда выполняется равенство

F → A + m g → = 0,

или, в проекции на вертикальную ось, –

F A − mg = 0.

Преобразуем равенство (условие равновесия шара в воздухе)

F A = mg

с учетом записанных выше выражений

ρ0gV = (m обол + m возд)g, или (ρ0 − ρ)V = m обол.

Входящие в равенство плотности воздуха не известны, но фигурируют в качестве параметра в уравнении состояния:

  • для воздуха снаружи оболочки воздушного шара

p 0 = ρ 0 R T 1 M ,

где p 0 – атмосферное давление; ρ0 – плотность воздуха снаружи оболочки; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура окружающего шар воздуха; M – молярная масса воздуха;

  • для воздуха внутри оболочки воздушного шара

p = ρ R T 2 M ,

где p – давление воздуха внутри оболочки; ρ – плотность воздуха внутри оболочки; T 2 – температура воздуха внутри оболочки.

Давления воздуха внутри и снаружи оболочки воздушного шара одинаковы, так как воздух, находящийся в оболочке, сообщается с атмосферой; поэтому

p = p 0.

Плотности:

  • для воздуха снаружи оболочки воздушного шара

ρ 0 = p 0 M R T 1 ;

  • для воздуха внутри оболочки воздушного шара

ρ = p 0 M R T 2 .

Подставим выражения для плотностей в условие равновесия шара в воздухе:

( 1 T 1 − 1 T 2 ) p 0 M V R = m обол .

Температура воздуха внутри оболочки, при которой шар начинает взлетать, определяется как

T 2 = p 0 M V T 1 p 0 M V − R T 1 m обол ,

а искомая разность –

Δ T = T 2 − T 1 = p 0 M V T 1 p 0 M V − R T 1 m обол − T 1 = T 1 p 0 M V R T 1 m обол − 1 .

Произведем вычисление:

Δ T = 300 100 ⋅ 10 3 ⋅ 29,0 ⋅ 10 − 3 ⋅ 830 ⋅ 10 − 3 8,31 ⋅ 300 ⋅ 333 ⋅ 10 − 3 − 1 = 158 К.

Следовательно, чтобы воздушный шар начал взлетать, воздух в его оболочке необходимо нагреть на 158 К, или 158 °С.

Пример 18. Камеру футбольного мяча объемом 3,00 л накачивают с помощью насоса, забирающего из атмосферы 0,150 л воздуха при каждом качании. Атмосферное давление составляет 100 кПа. Определить давление в камере после 30 качаний, если первоначально она была пустой. Температура постоянна.

Решение. За N качаний насос забирает из атмосферы определенное количество воздуха ν. Это же количество воздуха попадает в камеру футбольного мяча.

Указанное количество воздуха имеет следующий объем:

  • воздух, забранный из атмосферы за N качаний насоса, –

V 1 = NV нас,

где V нас – объем насоса, V нас = 0,150 л; N – количество качаний;

  • воздух, накачанный в камеру футбольного мяча, –

V 2 = V мяч,

где V мяч – объем камеры мяча, V мяч = 3,00 л.

Данное количество воздуха находится при следующем давлении:

  • воздух, забранный из атмосферы за N качаний насоса, –

p 1 = 100 кПа

совпадает с атмосферным давлением;

  • воздух, накачанный в камеру футбольного мяча, – p 2 (является искомой величиной).

Считая процесс заполнения воздухом камеры мяча изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:

  • для воздуха, забранного из атмосферы за N качаний насоса, –

p 1V 1 = νRT,

где R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • для воздуха, накачанного в камеру футбольного мяча, –

p 2V 2 = νRT.

Равенство

p 1V 1 = p 2V 2,

записанное в явном виде

p 1NV нас = p 2V мяч,

позволяет получить формулу для вычисления давления в камере футбольного мяча:

p 2 = p 1 N V нас V мяч .

Произведем вычисление:

p 2 = 100 ⋅ 10 3 ⋅ 30 ⋅ 0,15 ⋅ 10 − 3 3,00 ⋅ 10 − 3 = 150 ⋅ 10 3 Па = 150 кПа.

Источник

5.4. Практическое применение уравнения состояния идеального газа

Читайте также:  Как перелить азот из сосуда дьюара в термос

5.4.1. Уравнение состояния для идеального газа в открытом сосуде

При рассмотрении идеального газа, находящегося в открытом сосуде, необходимо учитывать, что вследствие изменения термодинамических параметров часть газа выходит из сосуда. При этом уравнение состояния записывается только для той части газа, которая остается в сосуде.

Для идеального газа, находящегося в открытом сосуде, необходимо учитывать следующее:

  • масса газа изменяется в результате изменения его термодинамических параметров:

m ≠ const;

  • рассматривается газ, оставшийся в сосуде определенного объема, т.е. объем газа фиксирован:

V = const;

  • давление газа может изменяться или оставаться постоянным (в зависимости от условия задачи), причем на изменение давления в условии задачи обычно бывает четкое указание.

Если давление идеального газа в открытом сосуде по условию задачи изменяется (p ≠ const), то уравнение Менделеева – Клапейрона записывается для двух состояний газа в виде системы (рис. 5.7):Рис. 5.7

p 1 V = m 1 M R T 1 , p 2 V = m 2 M R T 2 , }

где p 1, m 1, T 1 – давление, масса и температура газа в начальном состоянии; p 2, m 2, T 2 – указанные параметры газа в конечном состоянии; V – объем сосуда; M – молярная масса газа; R – универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К).

Если давление идеального газа в открытом сосуде по условию задачи остается постоянным (p = const), то изменения некоторых характеристик газа в открытом сосуде можно вычислить по следующим формулам:

  • изменение массы

Δ m = m 1 − m 2 = m 1 ( 1 − T 1 T 2 ) ,

где m 1 – первоначальная масса газа; m 2 – масса газа в конце процесса; T 1 – термодинамическая (абсолютная) температура газа в начале процесса; T 2 – термодинамическая (абсолютная) температура газа в конце процесса;

  • изменение плотности

Δ ρ = ρ 1 − ρ 2 = ρ 1 ( 1 − T 1 T 2 ) ,

где ρ1 – первоначальная плотность газа; ρ2 – плотность газа в конце процесса;

  • изменение количества вещества

Δ ν = ν 1 − ν 2 = ν 1 ( 1 − T 1 T 2 ) ,

где ν1 – первоначальное количество вещества (газа) в сосуде; ν2 – количество вещества (газа) в сосуде в конце процесса.

Пример 11. В открытом сосуде объемом 450 дм3 содержится некоторое количество идеального газа. Температуру газа увеличивают от 27 до 177 °С. Давление газа остается постоянным и равным 166 кПа. Сколько моль газа выйдет из сосуда?

Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в открытом сосуде, при нагревании:

  • для начального состояния

pV = ν1RT 1;

  • для конечного состояния

pV = ν2RT 2;

где p – давление газа, p = const; V – объем газа (сосуда), V = const; ν1, ν2 – количество вещества (газа) в начале и в конце процесса; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1, T 2 – температура газа в начале и в конце процесса.

Первое уравнение позволяет получить формулу для расчета количества вещества (газа) в начале процесса:

ν 1 = p V R T 1 .

Подстановка полученной формулы в уравнение

Δ ν = ν 1 ( 1 − T 1 T 2 )

дает искомую разность

Δ ν = p V R T 1 ( 1 − T 1 T 2 ) = p V ( T 2 − T 1 ) R T 1 T 2 .

Для вычисления искомой величины необходимо перевести температуру из градусов Цельсия в кельвины:

T 1 = t 1 + 273 = 27 + 273 = 300 К,

T 2 = t 2 + 273 = 177 + 273 = 450 К.

Произведем вычисление:

Δ ν = 166 ⋅ 10 3 ⋅ 450 ⋅ 10 − 3 ( 450 − 300 ) 8,31 ⋅ 450 ⋅ 300 = 10 моль.

При нагревании из сосуда вышло 10 моль газа.

Пример 12. В баллоне при температуре 15 °С находится идеальный газ. Из баллона выходит 40 % газа, а температура при этом понижается на 8,0 °С. Во сколько раз уменьшится давление газа в баллоне?

Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в открытом сосуде:

  • для начального состояния

p 1V = ν1RT 1;

  • для конечного состояния

p 2V = ν2RT 2;

где p 1 – давление газа в начальном состоянии; p 2 – давление газа в конечном состоянии; V – объем газа (сосуда), V = const; ν1, ν2 – количество вещества (газа) в начале и в конце процесса соответственно; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1, T 2 – температура газа в начале и в конце процесса соответственно.

Искомой величиной является отношение давлений p 1/p 2, которое определим из отношения уравнений:

p 1 V p 2 V = ν 1 R T 1 ν 2 R T 2 , т.е. p 1 p 2 = ν 1 T 1 ν 2 T 2 .

В результате процесса из баллона выходит 40 % газа, поэтому количество вещества (газа) ν2, оставшегося в баллоне, составляет 60 % от количества вещества (газа) ν1, которое было в начале процесса:

ν2 = 0,6ν1.

Для вычисления искомой величины необходимо сделать перевод температуры, заданной в градусах Цельсия, в кельвины:

T 1 = t 1 + 273 = 15 + 273 = 288 К,

T 2 = t 2 + 273 = (t 1 − Δt) + 273 = (15 − 8,0) + 273 = 280 К.

Подстановка температур и количества вещества (газа), оставшегося в баллоне, в выражение для искомой величины дает

p 1 p 2 = ν 1 T 1 0,6 ν 1 T 2 = T 1 0,6 T 2 = 288 0,6 ⋅ 280 = 1,7 .

Давление газа в баллоне понизится в 1,7 раза.

Источник